![]() |
![]() |
#1 |
Jun 2003
Suva, Fiji
23·3·5·17 Posts |
![]()
The purpose of this thread to is post news relating to new very prime Riesel and Sierpinski k, in order that prime hunters might want to source new k's to search to high n.
A VPS (Very Prime Series) is one in which there are 100 or more primes at n=10,000 for a given k. Details of discovered k, and how to find them, are shown at http://robert.smith44444.googlepages...umberresources Please quote new k in the following format, k is y*M(x) where y is an integer, M(x) is the multiplier 3*5*11*13*19*29.....x, where x is the largest prime of the product of all consecutive primes less than x that have multiplicative order base 2 of p-1. So a posting for k=1043827764761*3*5*11*13*19*29*37*53*2^n-1, which has its 100th prime at n=8888, and 103 by 10000 would be: R 1043827764761 53 100/8888 103/10000 R=Riesel , i.e. the - series S=Proth, i.e. the + series You can also post near misses. |
![]() |
![]() |
![]() |
#2 |
Jun 2003
Suva, Fiji
23·3·5·17 Posts |
![]()
R 1029369515711 53 100/8895 102/10000 tested to 114/20000 Unreserved
R 1636889512137 53 100/7724 104/10000 tested to 111/20000 Unreserved R 1212241451853 53 100/8256 106/10000 tested to 110/20000 Unreserved Near misses: R 3053018310957 53 99/10000 R 3058988541335 53 99/10000 |
![]() |
![]() |
![]() |
#3 |
Jun 2003
Suva, Fiji
204010 Posts |
![]()
R 3680068181457 53 100/7836 105/10000
R 3995993454669 53 100/9870 100/10000 Near misses: R 3459395798073 53 99/10000 R 3726133257251 53 99/10000 R 3916647606303 53 99/10000 |
![]() |
![]() |
![]() |
#4 |
Oct 2006
22·5·13 Posts |
![]()
Near misses:
S 2693372639 131 99/9991 100/10029 Tested to n=100,000, continuing. S 219548216121 131 99/9915 100/10563 Tested to n=58,800, continuing. Testing ep=131 to y=1T, currently at y=300B. roger Last fiddled with by roger on 2007-12-23 at 21:05 |
![]() |
![]() |
![]() |
#5 |
Jun 2003
Suva, Fiji
7F816 Posts |
![]()
Some from E106:
R 408251547745613 107 100/8230 105/10000 R 5071829957884753 107 100/8856 101/10000 R 5858856352434629 107 100/9050 103/10000 R 101532422035567 107 100/9253 102/10000 Will take these 4 to 20000 We now have 71 Riesels which are 100/10000 or better Near miss: R 5731587575971897 107 99/10000 Last fiddled with by robert44444uk on 2008-01-06 at 11:56 |
![]() |
![]() |
![]() |
#6 |
Oct 2006
22×5×13 Posts |
![]()
Update: Have sieved for EP131 to 3T, and tested about half of the 2-3T candidates.
Continuing until the blasted VPS is found ![]() ![]() No new near misses or anything yet ![]() roger Last fiddled with by roger on 2008-01-15 at 02:19 |
![]() |
![]() |
![]() |
#7 |
Jun 2003
Suva, Fiji
23×3×5×17 Posts |
![]()
More from E82
R 38367867040615 83 100/6920 103/10000 R 61976585459877 83 100/8600 102/10000 R 63404089076241 83 100/8159 101/10000 |
![]() |
![]() |
![]() |
#8 |
Oct 2006
1000001002 Posts |
![]()
Maybe we should post here what e levels (both plus and minus) that have been tested/searched, and how far.
|
![]() |
![]() |
![]() |
#9 |
Jun 2003
Suva, Fiji
111111110002 Posts |
![]()
Its a little complex to do that, given that the software is slightly at fault. I have taken bites out of every E level, but not systematically yet. If others join the fray, then we can work out alternative strategies. At the moment Roger you have a clear run at all of the pluses and I the minuses.
|
![]() |
![]() |
![]() |
#10 |
Jun 2003
Suva, Fiji
23×3×5×17 Posts |
![]()
R 1876131394595 66 100/8443 101/10000
R 1416492589021 66 100/8013 100/10000 R 1533927640019 66 100/9972 100/10000 R 1842913644031 66 100/9937 100/10000 R 1970620879533 66 100/9500 100/10000 Near miss: R 1774116412215 66 99/10000 There are now 79 known Riesel 100+/10000 series |
![]() |
![]() |
![]() |
#11 |
Oct 2006
22×5×13 Posts |
![]()
As requested by robert44444uk, I'm posting my champion.txt file for ep131.
Note that e levels have different prime density, where 131 is much lower than say, 83 (takes longer to test too ![]() No VPS has been found for this ep level. I'm working on correcting that ![]() Code:
nth prime|n= y= type e value 1 1 641810301879 p 131 2 2 641810301879 p 131 3 3 2840650933081 p 131 4 4 2772154724807 p 131 5 5 2772154724807 p 131 6 9 1005717171003 p 131 7 14 1538438983039 p 131 8 17 735833438703 p 131 9 19 433185946681 p 131 10 26 2332776531909 p 131 11 30 2332776531909 p 131 12 33 2536788504417 p 131 13 42 2872822380539 p 131 14 50 2872822380539 p 131 15 56 2172948151745 p 131 16 65 2395888445905 p 131 17 69 2172948151745 p 131 18 70 2172948151745 p 131 19 79 2172948151745 p 131 20 102 2312866486441 p 131 21 106 2752757385789 p 131 22 114 2752757385789 p 131 23 115 496683804015 p 131 24 116 496683804015 p 131 25 126 2752757385789 p 131 26 145 496683804015 p 131 27 160 2651342095727 p 131 28 164 2651342095727 p 131 29 176 2651342095727 p 131 30 185 2651342095727 p 131 31 205 2651342095727 p 131 32 220 1752188272975 p 131 33 233 1752188272975 p 131 34 256 2082400108743 p 131 35 267 2082400108743 p 131 36 279 2651342095727 p 131 37 311 2651342095727 p 131 38 322 2651342095727 p 131 39 334 2651342095727 p 131 40 381 2651342095727 p 131 41 442 2651342095727 p 131 42 474 1155206085715 p 131 43 495 1155206085715 p 131 44 504 871408474377 p 131 45 523 2945274852093 p 131 46 535 2945274852093 p 131 47 588 689333657719 p 131 48 632 496683804015 p 131 49 674 410583188141 p 131 49 775 2544728821431 p 131 50 703 496683804015 p 131 51 749 496683804015 p 131 52 817 496683804015 p 131 53 872 410583188141 p 131 54 904 531404200817 p 131 55 935 410583188141 p 131 56 972 410583188141 p 131 57 992 410583188141 p 131 58 1025 496683804015 p 131 59 1284 496683804015 p 131 60 1366 900595313379 p 131 61 1404 1723839146501 p 131 62 1526 1723839146501 p 131 63 1540 1723839146501 p 131 64 1626 1723839146501 p 131 65 1642 1723839146501 p 131 66 1692 1723839146501 p 131 67 1995 2945274852093 p 131 68 2164 1179591275323 p 131 69 2224 1179591275323 p 131 70 2269 1179591275323 p 131 71 2307 1179591275323 p 131 72 2370 1179591275323 p 131 73 2395 1179591275323 p 131 74 2543 1179591275323 p 131 75 2827 1179591275323 p 131 76 3154 1179591275323 p 131 77 3446 1179591275323 p 131 78 3606 1179591275323 p 131 79 4140 1179591275323 p 131 80 4311 219548216121 p 131 81 4326 219548216121 p 131 82 4422 219548216121 p 131 83 4505 219548216121 p 131 84 5072 1748808165891 p 131 85 5079 1748808165891 p 131 86 5256 1748808165891 p 131 87 5298 1748808165891 p 131 88 5779 1748808165891 p 131 89 6334 1748808165891 p 131 90 6871 219548216121 p 131 91 7179 1748808165891 p 131 92 7186 1748808165891 p 131 93 7193 1748808165891 p 131 94 7401 1748808165891 p 131 95 7915 1748808165891 p 131 96 8108 1748808165891 p 131 97 9265 219548216121 p 131 98 9511 1179591275323 p 131 99 9915 2693372639 p 131 100 10029 2693372639 p 131 101 10175 2693372639 p 131 102 10607 2693372639 p 131 103 11197 2693372639 p 131 104 11328 219548216121 p 131 105 11873 219548216121 p 131 106 12835 219548216121 p 131 107 13741 219548216121 p 131 108 13907 219548216121 p 131 109 14294 219548216121 p 131 110 15041 219548216121 p 131 111 15568 219548216121 p 131 112 16331 219548216121 p 131 113 17439 219548216121 p 131 114 19283 219548216121 p 131 115 21819 1179591275323 p 131 116 21846 1179591275323 p 131 117 23660 1179591275323 p 131 118 24934 1179591275323 p 131 119 25998 1179591275323 p 131 120 26321 1179591275323 p 131 121 28913 1179591275323 p 131 122 34223 1179591275323 p 131 123 35094 219548216121 p 131 124 37932 1179591275323 p 131 125 38733 501092101517 p 131 126 39491 1179591275323 p 131 127 39715 1179591275323 p 131 128 43038 1179591275323 p 131 129 43404 1179591275323 p 131 130 47857 1179591275323 p 131 131 51088 1179591275323 p 131 132 63615 1179591275323 p 131 133 63756 1179591275323 p 131 134 67736 501092101517 p 131 135 69671 501092101517 p 131 136 71895 501092101517 p 131 Last fiddled with by roger on 2008-01-19 at 23:10 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem | sweety439 | sweety439 | 11 | 2020-09-23 01:42 |
Dual Sierpinski/Riesel prime | sweety439 | sweety439 | 0 | 2016-12-07 15:01 |
Sierpinski/ Riesel bases 6 to 18 | robert44444uk | Conjectures 'R Us | 139 | 2007-12-17 05:17 |
Sierpinski/Riesel Base 10 | rogue | Conjectures 'R Us | 11 | 2007-12-17 05:08 |
Sierpinski / Riesel - Base 22 | michaf | Conjectures 'R Us | 49 | 2007-12-17 05:03 |