mersenneforum.org Minimal set of the strings for primes with at least two digits
 Register FAQ Search Today's Posts Mark Forums Read

 2021-01-01, 03:57 #56 sweety439     "99(4^34019)99 palind" Nov 2016 (P^81993)SZ base 36 2·1,723 Posts Minimal set of prime-strings (> base, as LaurV's suggestion) in bases 2 to 12 (only bases 2 to 8 are proved to be complete) Code: 2: {11} 3: {12, 21, 111} 4: {11, 13, 23, 31, 221} 5: {12, 21, 23, 32, 34, 43, 104, 111, 131, 133, 313, 401, 414, 3101, 10103, 14444, 30301, 33001, 33331, 44441, 300031, 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013} 6: {11, 15, 21, 25, 31, 35, 45, 51, 4401, 4441, 40041} 7: {14, 16, 23, 25, 32, 41, 43, 52, 56, 61, 65, 113, 115, 131, 133, 155, 212, 221, 304, 313, 335, 344, 346, 364, 445, 515, 533, 535, 544, 551, 553, 1022, 1051, 1112, 1202, 1211, 1222, 2111, 3031, 3055, 3334, 3503, 3505, 3545, 4504, 4555, 5011, 5455, 5545, 5554, 6034, 6634, 11111, 11201, 30011, 30101, 31001, 31111, 33001, 33311, 35555, 40054, 100121, 150001, 300053, 351101, 531101, 1100021, 33333301, 5100000001, ..., 33333333333333331, ...} 8: {13, 15, 21, 23, 27, 35, 37, 45, 51, 53, 57, 65, 73, 75, 107, 111, 117, 141, 147, 161, 177, 225, 255, 301, 343, 361, 401, 407, 417, 431, 433, 463, 467, 471, 631, 643, 661, 667, 701, 711, 717, 747, 767, 3331, 3411, 4043, 4443, 4611, 5205, 6007, 6101, 6441, 6477, 6707, 6777, 7461, 7641, 47777, 60171, 60411, 60741, 444641, 500025, 505525, 3344441, 4444477, 5500525, 5550525, 55555025, 444444441, 744444441, 77774444441, 7777777777771, 555555555555525, 44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447} 9: {12, 14, 18, 21, 25, 32, 34, 41, 45, 47, 52, 58, 65, 67, 74, 78, 81, 87, 117, 131, 135, 151, 155, 175, 177, 238, 272, 308, 315, 331, 337, 355, 371, 375, 377, 438, 504, 515, 517, 531, 537, 557, 564, 601, 638, 661, 702, 711, 722, 735, 737, 751, 755, 757, 771, 805, 838, 1011, 1015, 1101, 1701, 2027, 2207, 3017, 3057, 3101, 3501, 3561, 3611, 3688, 3868, 5035, 5051, 5071, 5101, 5501, 5554, 5705, 5707, 7017, 7075, 7105, 7301, 8535, 8544, 8555, 8854, 20777, 22227, 22777, 30161, 33388, 50161, 50611, 53335, 55111, 55535, 55551, 57061, 57775, 70631, 71007, 77207, 100037, 100071, 100761, 105007, 270707, 301111, 305111, 333035, 333385, 333835, 338885, 350007, 500075, 530005, 555611, 631111, 720707, 2770007, 3030335, 7776662, 30300005, 30333335, 38333335, 51116111, 70000361, 300030005, 300033305, 351111111, 1300000007, 5161111111, 8333333335, ..., 300000000035, ..., 544444444444, ..., 2000000000007, ..., 56111111111111111111111111111111111111, ..., 7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666662, ...} 10: {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, ..., 555555555551, ..., 5000000000000000000000000000027, ...} 11: {12, 16, 18, 21, 27, 29, 34, 38, 3A, 43, 49, 54, 56, 61, 65, 67, 72, 76, 81, 89, 92, 94, 98, 9A, A3, 10A, 115, 117, 133, 139, 153, 155, 171, 193, 197, 199, 1AA, 225, 232, 236, 25A, 263, 315, 319, 331, 335, 351, 353, 362, 373, 379, 391, 395, 407, 414, 452, 458, 478, 47A, 485, 4A5, 4A7, 502, 508, 511, 513, 533, 535, 539, 551, 571, 579, 588, 595, 623, 632, 70A, 711, 715, 731, 733, 737, 755, 759, 775, 791, 797, 7AA, 803, 847, 858, 85A, 874, 885, 887, 913, 919, 931, 937, 957, 959, 975, 995, A07, A1A, A25, A45, A74, A7A, A85, AA1, AA7, 1101, 11A9, 1305, 1451, 1457, 15A7, 175A, 17A5, 17A9, 2023, 2045, 2052, 2083, 20A5, 2333, 2A05, 2A52, 3013, 3026, 3059, 3097, 3206, 3222, 3233, 3307, 3332, 3505, 4025, 4151, 4157, 4175, 4405, 4445, 4487, 450A, 4575, 5017, 5031, 5059, 5075, 5097, 5099, 5105, 515A, 517A, 520A, 5301, 5583, 5705, 577A, 5853, 5873, 5909, 5A17, 5A57, 5A77, 5A8A, 6683, 66A9, 7019, 7073, 7079, 7088, 7093, 7095, 7309, 7451, 7501, 7507, 7578, 757A, 75A7, 7787, 7804, 7844, 7848, 7853, 7877, 78A4, 7A04, 7A57, 7A79, 7A95, 8078, 8245, 8333, 8355, 8366, 8375, 8425, 8553, 8663, 8708, 8777, 878A, 8A05, 9053, 9101, 9107, 9305, 9505, 9703, A052, A119, A151, A175, A515, A517, A575, A577, A5A8, A719, A779, A911, AAA9, 10011, 10075, 10091, 10109, 10411, 10444, 10705, 10709, 10774, 10901, 11104, 11131, 11144, 11191, 1141A, 114A1, 13757, 1411A, 14477, 144A4, 14A04, 14A11, 17045, 17704, 1774A, 17777, 177A4, 17A47, 1A091, 1A109, 1A114, 1A404, 1A411, 1A709, 20005, 20555, 22203, 25228, 25282, 25552, 25822, 28522, 30037, 30701, 30707, 31113, 33777, 35009, 35757, 39997, 40045, 4041A, 40441, 4045A, 404A1, 4111A, 411A1, 42005, 44401, 44474, 444A1, 44555, 44577, 445AA, 44744, 44A01, 47471, 47477, 47701, 5057A, 50903, 5228A, 52A22, 52A55, 52A82, 55007, 550A9, 55205, 55522, 55557, 55593, 55805, 57007, 57573, 57773, 57807, 5822A, 58307, 58505, 58A22, 59773, 59917, 59973, 59977, 59999, 5A015, 5A2A2, 5AA99, 60836, 60863, 68636, 6A609, 6A669, 6A696, 6A906, 6A966, 70048, 70103, 70471, 70583, 70714, 71474, 717A4, 71A09, 74084, 74444, 74448, 74477, 744A8, 74747, 74774, 7488A, 74A48, 75773, 77144, 77401, 77447, 77799, 77A09, 78008, 78783, 7884A, 78888, 788A8, 79939, 79993, 79999, 7A051, 7A444, 7A471, 80005, 80252, 80405, 80522, 80757, 80AA5, 83002, 84045, 85307, 86883, 88863, 8A788, 90073, 90707, 90901, 95003, 97779, 97939, 99111, 99177, 99973, A0111, A0669, A0966, A0999, A0A09, A1404, A4177, A4401, A4717, A5228, A52AA, A5558, A580A, A5822, A58AA, A5A59, A5AA2, A6096, A6966, A6999, A7051, A7778, A7808, A9055, A9091, A9699, A9969, AA52A, AA58A, 100019, 100079, 101113, 101119, 101911, 107003, 140004, 144011, 144404, 1A0019, 1A0141, 1A5001, 1A7005, 1A9001, 222223, 222823, 300107, 300202, 300323, 303203, 307577, 310007, 332003, 370777, 400555, 401A11, 404001, 404111, 405AAA, 41A011, 440A41, 441011, 451777, 455555, 470051, 470444, 474404, 4A0401, 4A4041, 500015, 500053, 500077, 500507, 505577, 522A2A, 525223, 528A2A, 531707, 550777, 553707, 5555A9, 555A99, 557707, 55A559, 5807A7, 580A0A, 580A55, 58A0AA, 590007, 599907, 5A2228, 5A2822, 5A2AAA, 5A552A, 5AA22A, 5AAA22, 60A069, 683006, 6A0096, 6A0A96, 6A9099, 6A9909, 700778, 701074, 701777, 704408, 704417, 704457, 704484, 707041, 707441, 707708, 707744, 707784, 710777, 717044, 717077, 740008, 74484A, 770441, 770744, 770748, 770771, 777017, 777071, 777448, 777484, 777701, 7778A8, 777A19, 777A48, 778883, 78A808, 790003, 7A1009, 7A4408, 7A7708, 80A555, 828283, 828883, 840555, 850505, 868306, 873005, 883202, 900701, 909739, 909979, 909991, 970771, 977701, 979909, 990739, 990777, 990793, 997099, 999709, 999901, A00009, A00599, A01901, A05509, A0A058, A0A955, A10114, A555A2, A55999, A59991, A5A222, A5A22A, A60609, A66069, A66906, A69006, A79005, A87888, A90099, A90996, A96006, A96666, A97177, A97771, AA0A58, AA5A22, AAA522, 1000501, 1011141, 1030007, 1070047, 111114A, 1111A14, 1111A41, 1144441, 14A4444, 1700005, 1700474, 1A44444, 2555505, 2845055, 3030023, 3100003, 3333397, 4000111, 4011111, 41A1111, 4411111, 444441A, 4444771, 4470004, 4505005, 4744417, 4774441, 4777404, 4777417, 4777747, 4A11111, 4A40001, 5000093, 50005A7, 5005777, 5050553, 5055503, 5070777, 5222222, 5222AAA, 52AAAA2, 52AAAAA, 5505053, 5552AAA, 5555599, 5555A58, 5558A0A, 5558A55, 5558AAA, 55A0009, 55AAA52, 580000A, 5822222, 58AAAAA, 5A2222A, 5AA2222, 6000A69, 6000A96, 6A00069, 7000417, 7000741, 7000835, 7000857, 7007177, 7008305, 7014447, 7017444, 7074177, 7077477, 7077741, 7077747, 7100447, 7174404, 717444A, 7400404, 7700717, 7701077, 7701707, 7707778, 7774004, 7777104, 777741A, 7777441, 777774A, 7777A47, 7779003, 777A008, 777A778, 777A808, 77A4777, 7900399, 8305007, 8500707, 8555707, 8883022, 8AA5222, 9000035, 9007999, 9009717, 9009777, 9009997, 9090997, 9099907, 9355555, 9790099, 9900991, 9900997, 9907909, 9909079, 9979009, 9990079, 9990091, 9990907, 9999771, 9999799, 9999979, A000696, A000991, A001091, A006906, A010044, A040041, A0AAA58, A141111, A5222A2, A600A69, A906606, A909009, A990009, A997701, AA55A52, AAA5552, AAAAA52, 10004747, 10005007, 17000744, 22888823, 28888223, 30010111, 30555777, 31011111, 33000023, 40A00041, 45000055, 47040004, 50377777, 50555553, 5282AAA2, 55505003, 555A5A52, 555AAA2A, 55A5A552, 5AAAAA2A, 60A99999, 70000057, 70070474, 70074704, 70174004, 70700078, 70700474, 70704704, 70710707, 70771007, 70777177, 71074004, 74470001, 77000177, 77070477, 77100077, 77470004, 77700404, 77710007, 77717707, 77748808, 7774A888, 77770078, 77770474, 77774704, 77777008, 77777404, 77777778, 80555055, 88828823, 88888326, 88888823, 8A522222, 90097909, 90700999, 90977777, 97000001, 97000717, 97770007, 99000001, 99000771, 99077001, 99090097, 99777707, 99900097, 99970717, 99999097, 99999707, A0000058, A0004041, A00055A9, A000A559, A1900001, A5555009, A5A55552, A9700001, A9909006, A9990006, A9990606, A9999917, A9999966, 100000507, 100035077, 100050777, 100057707, 101111114, 15A000001, 170000447, 300577777, 40000A401, 447771777, 44A444441, 474000004, 477700004, 477777774, 505000003, 55555AA2A, 5555A5A2A, 700000147, 700017004, 700044004, 700077774, 700170004, 701000047, 701700004, 704000044, 704040004, 707070774, 707077704, 707770704, 707777004, 717000004, 717700007, 770000078, 770004704, 770070747, 770070774, 770700008, 770700084, 770707074, 777000044, 777000774, 777717007, 777770477, 777770747, 7777777A4, 77A700008, 888888302, 900000091, 900090799, 970009099, 990990007, 997000077, 999999997, A0000AA58, A00990001, A05555559, A44444111, A44444777, A44477777, A66666669, A90000606, A99999006, A99999099, 1000007447, 1005000007, 1500000001, ..., A000144444, ..., A900000066, ..., 33333333337, ..., 44444444447, ..., A0000000001, ..., A0014444444, ..., 40000000A0041, ..., A000000014444, ..., A044444444441, ..., A144444444411, ..., 40000000000401, ..., A0000044444441, ..., A00000000444441, ..., 11111111111111111, ..., 14444444444441111, ..., 44444444444444111, ..., A1444444444444444, ..., A9999999999999996, ..., 888888888888888883, ..., 1444444444444444444, ..., 7777777777777777771, ..., 4000000000000000A041, ..., A999999999999999999999, ..., A44444444444444444444444441, ..., 1500000000000000000000000007, ..., 40000000000000000000000000041, ..., 440000000000000000000000000001, ..., 999999999999999999999999999999991, ..., A477777777777777777777777777777777777777777, ..., 444444444444444444444444444444444444444444441, ...} 12: {11, 15, 17, 1B, 25, 27, 31, 35, 37, 3B, 45, 4B, 51, 57, 5B, 61, 67, 6B, 75, 81, 85, 87, 8B, 91, 95, A7, AB, B5, B7, 221, 241, 2A1, 2B1, 2BB, 401, 421, 447, 471, 497, 565, 655, 665, 701, 70B, 721, 747, 771, 77B, 797, 7A1, 7BB, 907, 90B, 9BB, A41, B21, B2B, 2001, 200B, 202B, 222B, 229B, 292B, 299B, 4441, 4707, 4777, 6A05, 6AA5, 729B, 7441, 7B41, 929B, 9777, 992B, 9947, 997B, 9997, A0A1, A201, A605, A6A5, AA65, B001, B0B1, BB01, BB41, 600A5, 7999B, 9999B, AAAA1, B04A1, B0B9B, BAA01, BAAA1, BB09B, BBBB1, 44AAA1, A00065, BBBAA1, AAA0001, B00099B, AA000001, BBBBBB99B, ..., B0000000000000000000000000009B, ...} Last fiddled with by sweety439 on 2021-01-04 at 14:11
 2021-01-01, 03:58 #57 sweety439     "99(4^34019)99 palind" Nov 2016 (P^81993)SZ base 36 2·1,723 Posts Base 11 5{7} family searched to around 15000 digits, without finding any (probable) primes
 2021-01-01, 15:39 #58 sweety439     "99(4^34019)99 palind" Nov 2016 (P^81993)SZ base 36 2·1,723 Posts Now, we proved the set of minimal primes (start with b+1, which is equivalent to start with b, if b is composite) of base b=8: Code: 13 15 21 23 27 35 37 45 51 53 57 65 73 75 107 111 117 141 147 161 177 225 255 301 343 361 401 407 417 431 433 463 467 471 631 643 661 667 701 711 717 747 767 3331 3411 4043 4443 4611 5205 6007 6101 6441 6477 6707 6777 7461 7641 47777 60171 60411 60741 444641 500025 505525 3344441 4444477 5500525 5550525 55555025 444444441 744444441 77774444441 7777777777771 555555555555525 44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447
 2021-01-01, 15:45 #59 sweety439     "99(4^34019)99 palind" Nov 2016 (P^81993)SZ base 36 1101011101102 Posts Let L(b) be the minimal set of the strings for the primes >b in base b Code: b |L(b)| largest element in L(b) largest element in L(b) in base b written in decimal 2 1 11 3 3 3 111 13 4 5 221 41 5 22 109313 5^95+8 6 11 40041 5209 8 75 42207 (2^665+17)/7
2021-01-01, 16:07   #60
sweety439

"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

2×1,723 Posts

Quote:
 Originally Posted by sweety439 Minimal set of prime-strings (> base, as LaurV's suggestion) in bases 2 to 12 (only bases 2 to 8 are proved to be complete) Code: 2: {11} 3: {12, 21, 111} 4: {11, 13, 23, 31, 221} 5: {12, 21, 23, 32, 34, 43, 104, 111, 131, 133, 313, 401, 414, 3101, 10103, 14444, 30301, 33001, 33331, 44441, 300031, 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013} 6: {11, 15, 21, 25, 31, 35, 45, 51, 4401, 4441, 40041} 7: {14, 16, 23, 25, 32, 41, 43, 52, 56, 61, 65, 113, 115, 131, 133, 155, 212, 221, 304, 313, 335, 344, 346, 364, 445, 515, 533, 535, 544, 551, 553, 1022, 1051, 1112, 1202, 1211, 1222, 2111, 3031, 3055, 3334, 3503, 3505, 3545, 4504, 4555, 5011, 5455, 5545, 5554, 6034, 6634, 11111, 11201, 30011, 30101, 31001, 31111, 33001, 33311, 35555, 40054, 100121, 150001, 300053, 351101, 531101, 1100021, 33333301, 5100000001, ..., 33333333333333331, ...} 8: {13, 15, 21, 23, 27, 35, 37, 45, 51, 53, 57, 65, 73, 75, 107, 111, 117, 141, 147, 161, 177, 225, 255, 301, 343, 361, 401, 407, 417, 431, 433, 463, 467, 471, 631, 643, 661, 667, 701, 711, 717, 747, 767, 3331, 3411, 4043, 4443, 4611, 5205, 6007, 6101, 6441, 6477, 6707, 6777, 7461, 7641, 47777, 60171, 60411, 60741, 444641, 500025, 505525, 3344441, 4444477, 5500525, 5550525, 55555025, 444444441, 744444441, 77774444441, 7777777777771, 555555555555525, 44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447} 9: {12, 14, 18, 21, 25, 32, 34, 41, 45, 47, 52, 58, 65, 67, 74, 78, 81, 87, 117, 131, 135, 151, 155, 175, 177, 238, 272, 308, 315, 331, 337, 355, 371, 375, 377, 438, 504, 515, 517, 531, 537, 557, 564, 601, 638, 661, 702, 711, 722, 735, 737, 751, 755, 757, 771, 805, 838, 1011, 1015, 1101, 1701, 2027, 2207, 3017, 3057, 3101, 3501, 3561, 3611, 3688, 3868, 5035, 5051, 5071, 5101, 5501, 5554, 5705, 5707, 7017, 7075, 7105, 7301, 8535, 8544, 8555, 8854, 20777, 22227, 22777, 30161, 33388, 50161, 50611, 53335, 55111, 55535, 55551, 57061, 57775, 70631, 71007, 77207, 100037, 100071, 100761, 105007, 270707, 301111, 305111, 333035, 333385, 333835, 338885, 350007, 500075, 530005, 555611, 631111, 720707, 2770007, 3030335, 7776662, 30300005, 30333335, 38333335, 51116111, 70000361, 300030005, 300033305, 351111111, 1300000007, 5161111111, 8333333335, ..., 300000000035, ..., 544444444444, ..., 2000000000007, ..., 56111111111111111111111111111111111111, ..., 7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666662, ...} 10: {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, ..., 555555555551, ..., 5000000000000000000000000000027, ...} 11: {12, 16, 18, 21, 27, 29, 34, 38, 3A, 43, 49, 54, 56, 61, 65, 67, 72, 76, 81, 89, 92, 94, 98, 9A, A3, 10A, 115, 117, 133, 139, 153, 155, 171, 193, 197, 199, 1AA, 225, 232, 236, 25A, 263, 315, 319, 331, 335, 351, 353, 362, 373, 379, 391, 395, 407, 414, 452, 458, 478, 47A, 485, 4A5, 4A7, 502, 508, 511, 513, 533, 535, 539, 551, 571, 579, 588, 595, 623, 632, 70A, 711, 715, 731, 733, 737, 755, 759, 775, 791, 797, 7AA, 803, 847, 858, 85A, 874, 885, 887, 913, 919, 931, 937, 957, 959, 975, 995, A07, A1A, A25, A45, A74, A7A, A85, AA1, AA7, 1101, 11A9, 1305, 1451, 1457, 15A7, 175A, 17A5, 17A9, 2023, 2045, 2052, 2083, 20A5, 2333, 2A05, 2A52, 3013, 3026, 3059, 3097, 3206, 3222, 3233, 3307, 3332, 3505, 4025, 4151, 4157, 4175, 4405, 4445, 4487, 450A, 4575, 5017, 5031, 5059, 5075, 5097, 5099, 5105, 515A, 517A, 520A, 5301, 5583, 5705, 577A, 5853, 5873, 5909, 5A17, 5A57, 5A77, 5A8A, 6683, 66A9, 7019, 7073, 7079, 7088, 7093, 7095, 7309, 7451, 7501, 7507, 7578, 757A, 75A7, 7787, 7804, 7844, 7848, 7853, 7877, 78A4, 7A04, 7A57, 7A79, 7A95, 8078, 8245, 8333, 8355, 8366, 8375, 8425, 8553, 8663, 8708, 8777, 878A, 8A05, 9053, 9101, 9107, 9305, 9505, 9703, A052, A119, A151, A175, A515, A517, A575, A577, A5A8, A719, A779, A911, AAA9, 10011, 10075, 10091, 10109, 10411, 10444, 10705, 10709, 10774, 10901, 11104, 11131, 11144, 11191, 1141A, 114A1, 13757, 1411A, 14477, 144A4, 14A04, 14A11, 17045, 17704, 1774A, 17777, 177A4, 17A47, 1A091, 1A109, 1A114, 1A404, 1A411, 1A709, 20005, 20555, 22203, 25228, 25282, 25552, 25822, 28522, 30037, 30701, 30707, 31113, 33777, 35009, 35757, 39997, 40045, 4041A, 40441, 4045A, 404A1, 4111A, 411A1, 42005, 44401, 44474, 444A1, 44555, 44577, 445AA, 44744, 44A01, 47471, 47477, 47701, 5057A, 50903, 5228A, 52A22, 52A55, 52A82, 55007, 550A9, 55205, 55522, 55557, 55593, 55805, 57007, 57573, 57773, 57807, 5822A, 58307, 58505, 58A22, 59773, 59917, 59973, 59977, 59999, 5A015, 5A2A2, 5AA99, 60836, 60863, 68636, 6A609, 6A669, 6A696, 6A906, 6A966, 70048, 70103, 70471, 70583, 70714, 71474, 717A4, 71A09, 74084, 74444, 74448, 74477, 744A8, 74747, 74774, 7488A, 74A48, 75773, 77144, 77401, 77447, 77799, 77A09, 78008, 78783, 7884A, 78888, 788A8, 79939, 79993, 79999, 7A051, 7A444, 7A471, 80005, 80252, 80405, 80522, 80757, 80AA5, 83002, 84045, 85307, 86883, 88863, 8A788, 90073, 90707, 90901, 95003, 97779, 97939, 99111, 99177, 99973, A0111, A0669, A0966, A0999, A0A09, A1404, A4177, A4401, A4717, A5228, A52AA, A5558, A580A, A5822, A58AA, A5A59, A5AA2, A6096, A6966, A6999, A7051, A7778, A7808, A9055, A9091, A9699, A9969, AA52A, AA58A, 100019, 100079, 101113, 101119, 101911, 107003, 140004, 144011, 144404, 1A0019, 1A0141, 1A5001, 1A7005, 1A9001, 222223, 222823, 300107, 300202, 300323, 303203, 307577, 310007, 332003, 370777, 400555, 401A11, 404001, 404111, 405AAA, 41A011, 440A41, 441011, 451777, 455555, 470051, 470444, 474404, 4A0401, 4A4041, 500015, 500053, 500077, 500507, 505577, 522A2A, 525223, 528A2A, 531707, 550777, 553707, 5555A9, 555A99, 557707, 55A559, 5807A7, 580A0A, 580A55, 58A0AA, 590007, 599907, 5A2228, 5A2822, 5A2AAA, 5A552A, 5AA22A, 5AAA22, 60A069, 683006, 6A0096, 6A0A96, 6A9099, 6A9909, 700778, 701074, 701777, 704408, 704417, 704457, 704484, 707041, 707441, 707708, 707744, 707784, 710777, 717044, 717077, 740008, 74484A, 770441, 770744, 770748, 770771, 777017, 777071, 777448, 777484, 777701, 7778A8, 777A19, 777A48, 778883, 78A808, 790003, 7A1009, 7A4408, 7A7708, 80A555, 828283, 828883, 840555, 850505, 868306, 873005, 883202, 900701, 909739, 909979, 909991, 970771, 977701, 979909, 990739, 990777, 990793, 997099, 999709, 999901, A00009, A00599, A01901, A05509, A0A058, A0A955, A10114, A555A2, A55999, A59991, A5A222, A5A22A, A60609, A66069, A66906, A69006, A79005, A87888, A90099, A90996, A96006, A96666, A97177, A97771, AA0A58, AA5A22, AAA522, 1000501, 1011141, 1030007, 1070047, 111114A, 1111A14, 1111A41, 1144441, 14A4444, 1700005, 1700474, 1A44444, 2555505, 2845055, 3030023, 3100003, 3333397, 4000111, 4011111, 41A1111, 4411111, 444441A, 4444771, 4470004, 4505005, 4744417, 4774441, 4777404, 4777417, 4777747, 4A11111, 4A40001, 5000093, 50005A7, 5005777, 5050553, 5055503, 5070777, 5222222, 5222AAA, 52AAAA2, 52AAAAA, 5505053, 5552AAA, 5555599, 5555A58, 5558A0A, 5558A55, 5558AAA, 55A0009, 55AAA52, 580000A, 5822222, 58AAAAA, 5A2222A, 5AA2222, 6000A69, 6000A96, 6A00069, 7000417, 7000741, 7000835, 7000857, 7007177, 7008305, 7014447, 7017444, 7074177, 7077477, 7077741, 7077747, 7100447, 7174404, 717444A, 7400404, 7700717, 7701077, 7701707, 7707778, 7774004, 7777104, 777741A, 7777441, 777774A, 7777A47, 7779003, 777A008, 777A778, 777A808, 77A4777, 7900399, 8305007, 8500707, 8555707, 8883022, 8AA5222, 9000035, 9007999, 9009717, 9009777, 9009997, 9090997, 9099907, 9355555, 9790099, 9900991, 9900997, 9907909, 9909079, 9979009, 9990079, 9990091, 9990907, 9999771, 9999799, 9999979, A000696, A000991, A001091, A006906, A010044, A040041, A0AAA58, A141111, A5222A2, A600A69, A906606, A909009, A990009, A997701, AA55A52, AAA5552, AAAAA52, 10004747, 10005007, 17000744, 22888823, 28888223, 30010111, 30555777, 31011111, 33000023, 40A00041, 45000055, 47040004, 50377777, 50555553, 5282AAA2, 55505003, 555A5A52, 555AAA2A, 55A5A552, 5AAAAA2A, 60A99999, 70000057, 70070474, 70074704, 70174004, 70700078, 70700474, 70704704, 70710707, 70771007, 70777177, 71074004, 74470001, 77000177, 77070477, 77100077, 77470004, 77700404, 77710007, 77717707, 77748808, 7774A888, 77770078, 77770474, 77774704, 77777008, 77777404, 77777778, 80555055, 88828823, 88888326, 88888823, 8A522222, 90097909, 90700999, 90977777, 97000001, 97000717, 97770007, 99000001, 99000771, 99077001, 99090097, 99777707, 99900097, 99970717, 99999097, 99999707, A0000058, A0004041, A00055A9, A000A559, A1900001, A5555009, A5A55552, A9700001, A9909006, A9990006, A9990606, A9999917, A9999966, 100000507, 100035077, 100050777, 100057707, 101111114, 15A000001, 170000447, 300577777, 40000A401, 447771777, 44A444441, 474000004, 477700004, 477777774, 505000003, 55555AA2A, 5555A5A2A, 700000147, 700017004, 700044004, 700077774, 700170004, 701000047, 701700004, 704000044, 704040004, 707070774, 707077704, 707770704, 707777004, 717000004, 717700007, 770000078, 770004704, 770070747, 770070774, 770700008, 770700084, 770707074, 777000044, 777000774, 777717007, 777770477, 777770747, 7777777A4, 77A700008, 888888302, 900000091, 900090799, 970009099, 990990007, 997000077, 999999997, A0000AA58, A00990001, A05555559, A44444111, A44444777, A44477777, A66666669, A90000606, A99999006, A99999099, 1000007447, 1005000007, ..., A000144444, ..., A900000066, ..., 33333333337, ..., 44444444447, ..., A0000000001, ..., A0014444444, ..., 40000000A0041, ..., A000000014444, ..., A044444444441, ..., A144444444411, ..., 40000000000401, ..., A0000044444441, ..., A00000000444441, ..., 11111111111111111, ..., 14444444444441111, ..., 44444444444444111, ..., A1444444444444444, ..., A9999999999999996, ..., 888888888888888883, ..., 1444444444444444444, ..., 7777777777777777771, ..., 4000000000000000A041, ..., A999999999999999999999, ..., A44444444444444444444444441, ..., 40000000000000000000000000041, ..., 440000000000000000000000000001, ..., 999999999999999999999999999999991, ..., 444444444444444444444444444444444444444444441, ...} 12: {11, 15, 17, 1B, 25, 27, 31, 35, 37, 3B, 45, 4B, 51, 57, 5B, 61, 67, 6B, 75, 81, 85, 87, 8B, 91, 95, A7, AB, B5, B7, 221, 241, 2A1, 2B1, 2BB, 401, 421, 447, 471, 497, 565, 655, 665, 701, 70B, 721, 747, 771, 77B, 797, 7A1, 7BB, 907, 90B, 9BB, A41, B21, B2B, 2001, 200B, 202B, 222B, 229B, 292B, 299B, 4441, 4707, 4777, 6A05, 6AA5, 729B, 7441, 7B41, 929B, 9777, 992B, 9947, 997B, 9997, A0A1, A201, A605, A6A5, AA65, B001, B0B1, BB01, BB41, 600A5, 7999B, 9999B, AAAA1, B04A1, B0B9B, BAA01, BAAA1, BB09B, BBBB1, 44AAA1, A00065, BBBAA1, AAA0001, B00099B, AA000001, ..., B0000000000000000000000000009B, ...}
Large minimal primes (start with b+1) base b written in standard form (a*b^n+c)/gcd(a+c,b-1) with a>=1, c != 0, gcd(a,c) = 1, gcd(b,c) = 1:

Base 5:

100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000013 = 109313 = 5^95+8

Base 7:

33333333333333331 = 3161 = (7^17-5)/2

Base 8:

7777777777771 = 7121 = 8^13-7
555555555555525 = 51325 = (5*8^15-173)/7
44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 = 42207 = (4*8^221+17)/7

Base 9:

300000000035 = 30935 = 3*9^11+32
544444444444 = 5411 = (11*9^11-1)/2
2000000000007 = 20117 = 2*9^12+7
56111111111111111111111111111111111111 = 56136 = (409*9^36-1)/8
7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666662 = 763292 = (31*9^330-19)/4

Base 10:

555555555551 = 5111 = (5*10^12-41)/9
5000000000000000000000000000027 = 502827 = 5*10^30+27

Base 12:

B0000000000000000000000000009B = B0279B = 11*12^29+119

Last fiddled with by sweety439 on 2021-01-04 at 14:11

 2021-01-01, 16:10 #61 sweety439     "99(4^34019)99 palind" Nov 2016 (P^81993)SZ base 36 2×1,723 Posts Note: The length of the repeating digits is always written in decimal, e.g. 9E800873 (in base 23) for (106*23^800873-7)/11, the largest minimal (probable) prime in base 23, and 42207 (in base 8) for (4*8^221+17)/7, the largest minimal prime (start with 2 digits) in base 8 (also, the value of a,b,c,gcd(a+c,b-1) in the formula (a*b^n+c)/gcd(a+c,b-1) are also written in decimal)
 2021-01-02, 03:15 #62 sweety439     "99(4^34019)99 palind" Nov 2016 (P^81993)SZ base 36 2·1,723 Posts The total proof for base 8: In base 8, the possible (first digit,last digit) for an element with >=3 digits in the minimal set of the strings for primes with at least two digits are (1,1), (1,3), (1,5), (1,7), (2,1), (2,3), (2,5), (2,7), (3,1), (3,3), (3,5), (3,7), (4,1), (4,3), (4,5), (4,7), (5,1), (5,3), (5,5), (5,7), (6,1), (6,3), (6,5), (6,7), (7,1), (7,3), (7,5), (7,7) * Case (1,1): ** Since 13, 15, 21, 51, 111, 141, 161 are primes, we only need to consider the family 1{0,7}1 (since any digits 1, 2, 3, 4, 5, 6 between them will produce smaller primes) *** Since 107, 177, 701 are primes, we only need to consider the number 171 and the family 1{0}1 (since any digits combo 07, 70, 77 between them will produce smaller primes) **** 171 is not prime. **** All numbers of the form 1{0}1 factored as 10^n+1 = (2^n+1) * (4^n-2^n+1), thus cannot be prime. * Case (1,3): ** 13 is prime, and thus the only minimal prime in this family. * Case (1,5): ** 15 is prime, and thus the only minimal prime in this family. * Case (1,7): ** Since 13, 15, 27, 37, 57, 107, 117, 147, 177 are primes, we only need to consider the family 1{6}7 (since any digits 0, 1, 2, 3, 4, 5, 7 between them will produce smaller primes) *** The smallest prime of the form 1{6}7 is 16667 (not minimal prime, since 667 is prime) * Case (2,1): ** 21 is prime, and thus the only minimal prime in this family. * Case (2,3): ** 23 is prime, and thus the only minimal prime in this family. * Case (2,5): ** Since 21, 23, 27, 15, 35, 45, 65, 75, 225, 255 are primes, we only need to consider the family 2{0}5 (since any digits 1, 2, 3, 4, 5, 6, 7 between them will produce smaller primes) *** All numbers of the form 2{0}5 are divisible by 7, thus cannot be prime. * Case (2,7): ** 27 is prime, and thus the only minimal prime in this family. * Case (3,1): ** Since 35, 37, 21, 51, 301, 361 are primes, we only need to consider the family 3{1,3,4}1 (since any digits 0, 2, 5, 6, 7 between them will produce smaller primes) *** Since 13, 343, 111, 131, 141, 431, 3331, 3411 are primes, we only need to consider the families 3{3}11, 33{1,4}1, 3{3,4}4{4}1 (since any digits combo 11, 13, 14, 33, 41, 43 between them will produce smaller primes) **** All numbers of the form 3{3}11 are divisible by 3, thus cannot be prime. **** For the 33{1,4}1 family, since 111 and 141 are primes, we only need to consider the families 33{4}1 and 33{4}11 (since any digits combo 11, 14 between them will produce smaller primes) ***** The smallest prime of the form 33{4}1 is 3344441 ***** All numbers of the form 33{4}11 are divisible by 301, thus cannot be prime. **** For the 3{3,4}4{4}1 family, since 3331 and 3344441 are primes, we only need to consider the families 3{4}1, 3{4}31, 3{4}341, 3{4}3441, 3{4}34441 (since any digits combo 33 or 34444 between (3,1) will produce smaller primes) ***** All numbers of the form 3{4}1 are divisible by 31, thus cannot be prime. ***** Since 4443 is prime, we only need to consider the numbers 3431, 34431, 34341, 344341, 343441, 3443441, 3434441, 34434441 (since any digit combo 444 between (3,3{4}1) will produce smaller primes) ****** None of 3431, 34431, 34341, 344341, 343441, 3443441, 3434441, 34434441 are primes. * Case (3,3): ** Since 35, 37, 13, 23, 53, 73, 343 are primes, we only need to consider the family 3{0,3,6}3 (since any digits 1, 2, 4, 5, 7 between them will produce smaller primes) *** All numbers of the form 3{0,3,6}3 are divisible by 3, thus cannot be prime. * Case (3,5): ** 35 is prime, and thus the only minimal prime in this family. * Case (3,7): ** 37 is prime, and thus the only minimal prime in this family. * Case (4,1): ** Since 45, 21, 51, 401, 431, 471 are primes, we only need to consider the family 4{1,4,6}1 (since any digits 0, 2, 3, 5, 7 between them will produce smaller primes) *** Since 111, 141, 161, 661, 4611 are primes, we only need to consider the families 4{4}11, 4{4,6}4{1,4,6}1, 4{4}6{4}1 (since any digits combo 11, 14, 16, 61, 66 between them will produce smaller primes) **** The smallest prime of the form 4{4}11 is 44444444444444411 (not minimal prime, since 444444441 is prime) **** For the 4{4,6}4{1,4,6}1 family, we can separate this family to 4{4,6}41, 4{4,6}411, 4{4,6}461 ***** For the 4{4,6}41 family, since 661 and 6441 are primes, we only need to consider the families 4{4}41 and 4{4}641 (since any digits combo 64 or 66 between (4,41) will produce smaller primes) ****** The smallest prime of the form 4{4}41 is 444444441 ****** The smallest prime of the form 4{4}641 is 444641 ***** For the 4{4,6}411 family, since 661 and 6441 are primes, we only need to consider the families 4{4}411 and 4{4}6411 (since any digits combo 64 or 66 between (4,411) will produce smaller primes) ****** The smallest prime of the form 4{4}411 is 444444441 ****** The smallest prime of the form 4{4}6411 is 4444444444444446411 (not minimal prime, since 444444441 and 444641 are primes) ***** For the 4{4,6}461 family, since 661 is prime, we only need to consider the family 4{4}461 ****** The smallest prime of the form 4{4}461 is 4444444461 (not minimal prime, since 444444441 is prime) **** For the 4{4}6{4}1 family, since 6441 is prime, we only need to consider the families 4{4}61 and 4{4}641 (since any digits combo 44 between (4{4}6,1) will produce smaller primes) ***** The smallest prime of the form 4{4}61 is 4444444461 (not minimal prime, since 444444441 is prime) ***** The smallest prime of the form 4{4}641 is 444641 * Case (4,3): ** Since 45, 13, 23, 53, 73, 433, 463 are primes, we only need to consider the family 4{0,4}3 (since any digits 1, 2, 3, 5, 6, 7 between them will produce smaller primes) *** Since 4043 and 4443 are primes, we only need to consider the families 4{0}3 and 44{0}3 (since any digits combo 04, 44 between them will produce smaller primes) **** All numbers of the form 4{0}3 are divisible by 7, thus cannot be prime. **** All numbers of the form 44{0}3 are divisible by 3, thus cannot be prime. * Case (4,5): ** 45 is prime, and thus the only minimal prime in this family. * Case (4,7): ** Since 45, 27, 37, 57, 407, 417, 467 are primes, we only need to consider the family 4{4,7}7 (since any digits 0, 1, 2, 3, 5, 6 between them will produce smaller primes) *** Since 747 is prime, we only need to consider the families 4{4}7, 4{4}77, 4{7}7, 44{7}7 (since any digits combo 74 between (4,7) will produce smaller primes) **** The smallest prime of the form 4{4}7 is 44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447, with 220 4's, which can be written as 42207 and equal the prime (2^665+17)/7 **** The smallest prime of the form 4{4}77 is 4444477 **** The smallest prime of the form 4{7}7 is 47777 **** The smallest prime of the form 44{7}7 is 4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777, with 851 7's, which can be written as 447851 and equal the prime 37*2^2553-1 (not minimal prime, since 47777 is prime) * Case (5,1): ** 51 is prime, and thus the only minimal prime in this family. * Case (5,3): ** 53 is prime, and thus the only minimal prime in this family. * Case (5,5): ** Since 51, 53, 57, 15, 35, 45, 65, 75 are primes, we only need to consider the family 5{0,2,5}5 (since any digits 1, 3, 4, 6, 7 between them will produce smaller primes) *** Since 225, 255, 5205 are primes, we only need to consider the families 5{0,5}5 and 5{0,5}25 (since any digits combo 20, 22, 25 between them will produce smaller primes) **** All numbers of the form 5{0,5}5 are divisible by 5, thus cannot be prime. **** For the 5{0,5}25 family, since 500025 and 505525 are primes, we only need to consider the number 500525 the families 5{5}25, 5{5}025, 5{5}0025, 5{5}0525, 5{5}00525, 5{5}05025 (since any digits combo 000, 055 between (5,25) will produce smaller primes) ***** 500525 is not prime. ***** The smallest prime of the form 5{5}25 is 555555555555525 ***** The smallest prime of the form 5{5}025 is 55555025 ***** The smallest prime of the form 5{5}0025 is 5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555550025 (not minimal prime, since 55555025 and 555555555555525 are primes) ***** The smallest prime of the form 5{5}0525 is 5550525 ***** The smallest prime of the form 5{5}00525 is 5500525 ***** The smallest prime of the form 5{5}05025 is 5555555555555555555555505025 (not minimal prime, since 5550525, 55555025, and 555555555555525 are primes) * Case (5,7): ** 57 is prime, and thus the only minimal prime in this family. * Case (6,1): ** Since 65, 21, 51, 631, 661 are primes, we only need to consider the family 6{0,1,4,7}1 (since any digits 2, 3, 5, 6 between them will produce smaller primes) *** Since 111, 141, 401, 471, 701, 711, 6101, 6441 are primes, we only need to consider the families 6{0}0{0,1,4,7}1, 6{0,4}1{7}1, 6{0,7}4{1}1, 6{0,1,7}7{4,7}1 (since any digits combo 11, 14, 40, 47, 70, 71, 10, 44 between them will produce smaller primes) **** For the 6{0}0{0,1,4,7}1 family, since 6007 is prime, we only need to consider the families 6{0}0{0,1,4}1 and 60{1,4,7}7{0,1,4,7}1 (since any digits combo 1007 between (6,1) will produce smaller primes) ***** For the 6{0}0{0,1,4}1 family, since 111, 141, 401, 6101, 6441, 60411 are primes, we only need to consider the families 6{0}1, 6{0}11, 6{0}41 (since any digits combo 10, 11, 14, 40, 41, 44 between (6{0}0,1) will produce smaller primes) ****** All numbers of the form 6{0}1 are divisible by 7, thus cannot be prime. ****** All numbers of the form 6{0}11 are divisible by 3, thus cannot be prime. ****** All numbers of the form 6{0}41 are divisible by 3, thus cannot be prime. ***** For the 60{1,4,7}7{0,1,4,7}1 family, since 701, 711, 60741 are primes, we only need to consider the family 60{1,4,7}7{7}1 (since any digits 0, 1, 4 between (60{1,4,7}7,1) will produce smaller primes) ***** Since 471, 60171 is prime, we only need to consider the family 60{7}1 (since any digits 1, 4 between (60,7{7}1) will produce smaller primes) ****** All numbers of the form 60{7}1 are divisible by 7, thus cannot be prime. **** For the 6{0,4}1{7}1 family, since 417, 471 are primes, we only need to consider the families 6{0}1{7}1 and 6{0,4}11 ***** For the 6{0}1{7}1 family, since 60171 is prime, and thus the only minimal prime in the family 6{0}1{7}1. ***** For the 6{0,4}11 family, since 401, 6441, 60411 are primes, we only need to consider the number 6411 and the family 6{0}11 ****** 6411 is not prime. ****** All numbers of the form 6{0}11 are divisible by 3, thus cannot be prime. **** For the 6{0,7}4{1}1 family, since 60411 is prime, we only need to consider the families 6{7}4{1}1 and 6{0,7}41 ***** For the 6{7}4{1}1 family, since 111, 6777 are primes, we only need to consider the numbers 641, 6411, 6741, 67411, 67741, 677411 ****** None of 641, 6411, 6741, 67411, 67741, 677411 are primes. ***** For the 6{0,7}41 family, since 701, 6777, 60741 are primes, we only need to consider the families 6{0}41 and the numbers 6741, 67741 (since any digits combo 07, 70, 777 between (6,41) will produce smaller primes) ****** All numbers of the form 6{0}41 are divisible by 3, thus cannot be prime. ****** Neither of 6741, 67741 are primes. ***** For the 6{0,1,7}7{4,7}1 family, since 747 is prime, we only need to consider the families 6{0,1,7}7{4}1, 6{0,1,7}7{7}1, 6{0,1,7}7{7}{4}1 (since any digits combo 47 between (6{0,1,7}7,1) will produce smaller primes) ****** For the 6{0,1,7}7{4}1 family, since 6441 is prime, we only need to consider the families 6{0,1,7}71 and 6{0,1,7}741 (since any digits combo 44 between (6{0,1,7}7,1) will produce smaller primes) ******* For the 6{0,1,7}71 family, since all numbers of the form 6{0,7}71 are divisible by 7 and cannot be prime, and 111 is prime (thus, any digits combo 11 between (6,71) will produce smaller primes), we only need to consider the family 6{0,7}1{0,7}71 ******** Since 717 and 60171 are primes, we only need to consider the family 61{0,7}71 (since any digit combo 0, 7 between (6,1{0,7}71) will produce smaller primes) ********* Since 177 and 6101 are primes, we only need to consider the number 6171 (since any digit combo 0, 7 between (61,71) will produce smaller primes) ********** 6171 is not prime. ****** All numbers in the 6{0,1,7}7{7}1 or 6{0,1,7}7{7}{4}1 families are also in the 6{0,1,7}7{4}1 family, thus these two families cannot have more minimal primes. * Case (6,3): ** Since 65, 13, 23, 53, 73, 643 are primes, we only need to consider the family 6{0,3,6}3 (since any digits 1, 2, 4, 5, 7 between them will produce smaller primes) *** All numbers of the form 6{0,3,6}3 are divisible by 3, thus cannot be prime. * Case (6,5): ** 65 is prime, and thus the only minimal prime in this family. * Case (6,7): ** Since 65, 27, 37, 57, 667 are primes, we only need to consider the family 6{0,1,4,7}7 (since any digits 2, 3, 5, 6 between them will produce smaller primes) *** Since 107, 117, 147, 177, 407, 417, 717, 747, 6007, 6477, 6707, 6777 are primes, we only need to consider the families 60{1,4,7}7, 6{0}17, 6{0,4}4{4}7, 6{0}77 (since any digits combo 00, 10, 11, 14, 17, 40, 41, 47, 70, 71, 74, 77 between them will produce smaller primes) **** All numbers of the form 6{0}17 or 6{0}77 are divisible by 3, thus cannot be prime. **** For the 60{1,4,7}7 family, since 117, 147, 177, 417, 6477, 717, 747, 6777 are primes, we only need to consider the numbers 6017, 6047, 6077 and the family 60{4}7 (since any digit combo 11, 14, 17, 41, 47, 71, 74, 77 between (60,7) will produce smaller primes) ***** None of 6017, 6047, 6077 are primes. **** All numbers of the form 60{4}7 are divisible by 21, thus cannot be prime. **** For the 6{0,4}4{4}7 family, since 6007 and 407 are primes, we only need to consider the families 6{4}7 and 60{4}7 (since any digit combo 00, 40 between (6,4{4}7) will produce smaller primes) ***** All numbers of the form 6{4}7 are divisible by 3, 5, or 15, thus cannot be prime. ***** All numbers of the form 60{4}7 are divisible by 21, thus cannot be prime. * Case (7,1): ** Since 73, 75, 21, 51, 701, 711 are primes, we only need to consider the family 7{4,6,7}1 (since any digits 0, 1, 2, 3, 5 between them will produce smaller primes) *** Since 747, 767, 471, 661, 7461, 7641 are primes, we only need to consider the families 7{4,7}4{4}1, 7{7}61, 7{7}7{4,6,7}1 (since any digits combo 46, 47, 64, 66, 67 between them will produce smaller primes) **** For the 7{4,7}4{4}1 family, since 747, 471 are primes, we only need to consider the family 7{7}{4}1 (since any digits combo 47 between (7,4{4}1) will produce smaller primes) ***** The smallest prime of the form 7{7}1 is 7777777777771 ***** The smallest prime of the form 7{7}41 is 777777777777777777777777777777777777777777777777777777777777777777777777777777741 (not minimal prime, since 7777777777771 is prime) ***** The smallest prime of the form 7{7}441 is 777777777777777777777777777777777777777777777777777777777777777777777777777777777777441 (not minimal prime, since 7777777777771 is prime) ***** The smallest prime of the form 7{7}4441 is 777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777774441 (not minimal prime, since 7777777777771 is prime) ***** The smallest prime of the form 7{7}44441 is 7777777777777777777777777777777777777777777777777777777744441 (not minimal prime, since 7777777777771 is prime) ***** All numbers of the form 7{7}444441 are divisible by 7, thus cannot be prime. ***** The smallest prime of the form 7{7}4444441 is 77774444441 ****** Since this prime has just 4 7's, we only need to consider the families with <=3 7's ******* The smallest prime of the form 7{4}1 is 744444441 ******* All numbers of the form 77{4}1 are divisible by 5, thus cannot be prime. ******* The smallest prime of the form 777{4}1 is 777444444444441 (not minimal prime, since 444444441 and 744444441 are primes) * Case (7,3): ** 73 is prime, and thus the only minimal prime in this family. * Case (7,5): ** 75 is prime, and thus the only minimal prime in this family. * Case (7,7): ** Since 73, 75, 27, 37, 57, 717, 747, 767 are primes, we only need to consider the family 7{0,7}7 (since any digits 1, 2, 3, 4, 5, 6 between them will produce smaller primes) *** All numbers of the form 7{0,7}7 are divisible by 7, thus cannot be prime. Last fiddled with by sweety439 on 2021-01-13 at 20:37
2021-01-02, 04:34   #63
sweety439

"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

1101011101102 Posts

Quote:
 Originally Posted by sweety439 Base b minimal primes (start with 2 digits) includes: * The smallest repunit prime base b if exists * The smallest generalized Fermat prime base b for even b if exists * The smallest generalized half Fermat prime (> (b+1)/2) base b for odd b if exists * The smallest Williams prime with 1st kind base b if exists * The smallest Williams prime with 2nd kind base b if exists * The smallest Williams prime with 4th kind base b for bases b which no generalized Fermat primes exist (this includes all odd bases) and b is not prime (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest dual Williams prime with 1st kind base b if exists * The smallest dual Williams prime with 2nd kind base b for composite bases b (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest dual Williams prime with 4th kind base b for bases b which no generalized Fermat primes exist (this includes all odd bases) and b is not prime (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest prime of the form 2*b^n+1 for bases b>2 if exists * The smallest prime of the form 2*b^n-1 for bases b>2 if exists * The smallest prime of the form b^n+2 for bases b>2 with gcd(b,2)=1 for composite bases b (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest prime of the form b^n-2 for bases b>2 with gcd(b,2)=1 if exists * The smallest prime of the form 3*b^n+1 for bases b>3 if exists * The smallest prime of the form 3*b^n-1 for bases b>3 if exists * The smallest prime of the form b^n+3 for bases b>3 with gcd(b,3)=1 for composite bases b (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest prime of the form b^n-3 for bases b>3 with gcd(b,3)=1 if exists * The smallest prime of the form 4*b^n+1 for bases b>4 if exists * The smallest prime of the form 4*b^n-1 for bases b>4 if exists * The smallest prime of the form b^n+4 for bases b>4 with gcd(b,4)=1 for composite bases b (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest prime of the form b^n-4 for bases b>4 with gcd(b,4)=1 if exists ... * The smallest prime of the form k*b^n+1 for fixed 1<=k<=b-1 (i.e. the prime for the CRUS Sierpinski conjecture for fixed 1<=k<=b-1) if exists * The smallest prime of the form k*b^n-1 for fixed 1<=k<=b-1 (i.e. the prime for the CRUS Riesel conjecture for fixed 1<=k<=b-1) if exists * The smallest prime of the form b^n+k for fixed 1<=k<=b-1 if exists * The smallest prime of the form b^n-k for fixed 1<=k<=b-1 if exists * The smallest prime of the form (k*b^n-1)/gcd(k-1,b-1) for fixed k with 0<=(k-1)/gcd(k-1,b-1)<=b-1 and gcd(k-1,b-1) < b-1 (this reason is because if the repeating digit is 1, then this prime may not be minimal prime (start with 2 digits), unless there are no repunit primes base b (e.g. b = 9, 25, 32, 49, 64, 81, ...) (i.e. the prime for the extended Riesel conjecture for fixed k satisfying these two conditions) if exists * The smallest prime of the form (b^n-k)/gcd(k-1,b-1) for fixed k with gcd(b,k) = 1 and 0<=k<=b-1
There are OEIS sequences for these families in various bases:

* The smallest repunit prime base b: A084740 (exponent), A084738 (corresponding primes)
* The smallest generalized Fermat prime base b for even b: A079706 (exponent), A228101 (exponent of exponent), A084712 (corresponding primes)
* The smallest Williams prime with 1st kind base b: A122396 (exponent + 1, for prime b)
* The smallest Williams prime with 2nd kind base b: A305531 (exponent), A087139 (exponent + 1, for prime b)
* The smallest dual Williams prime with 1st kind base b: A113516 (exponent)
* The smallest dual Williams prime with 2nd kind base b: A076845 (exponent), A076846 (corresponding primes)
* The smallest prime of the form 2*b^n+1 for bases b: A119624 (exponent), A098872 (exponent, for b divisible by 6)
* The smallest prime of the form 2*b^n-1 for bases b: A119591 (exponent), A098873 (exponent, for b divisible by 6)
* The smallest prime of the form b^n+2 for bases b with gcd(b,2)=1: A138066 (exponent), A084713 (corresponding primes)
* The smallest prime of the form b^n-2 for bases b with gcd(b,2)=1: A255707 (exponent), A084714 (corresponding primes)
* The smallest prime of the form 3*b^n+1 for bases b: A098877 (exponent, for b divisible by 6)
* The smallest prime of the form 3*b^n-1 for bases b: A098876 (exponent, for b divisible by 6)

Last fiddled with by sweety439 on 2021-01-13 at 20:47

2021-01-02, 04:51   #64
sweety439

"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

2×1,723 Posts

Quote:
 Originally Posted by sweety439 Base b minimal primes (start with 2 digits) includes: * The smallest repunit prime base b if exists * The smallest generalized Fermat prime base b for even b if exists * The smallest generalized half Fermat prime (> (b+1)/2) base b for odd b if exists * The smallest Williams prime with 1st kind base b if exists * The smallest Williams prime with 2nd kind base b if exists * The smallest Williams prime with 4th kind base b for bases b which no generalized Fermat primes exist (this includes all odd bases) and b is not prime (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest dual Williams prime with 1st kind base b if exists * The smallest dual Williams prime with 2nd kind base b for composite bases b (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest dual Williams prime with 4th kind base b for bases b which no generalized Fermat primes exist (this includes all odd bases) and b is not prime (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest prime of the form 2*b^n+1 for bases b>2 if exists * The smallest prime of the form 2*b^n-1 for bases b>2 if exists * The smallest prime of the form b^n+2 for bases b>2 with gcd(b,2)=1 for composite bases b (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest prime of the form b^n-2 for bases b>2 with gcd(b,2)=1 if exists * The smallest prime of the form 3*b^n+1 for bases b>3 if exists * The smallest prime of the form 3*b^n-1 for bases b>3 if exists * The smallest prime of the form b^n+3 for bases b>3 with gcd(b,3)=1 for composite bases b (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest prime of the form b^n-3 for bases b>3 with gcd(b,3)=1 if exists * The smallest prime of the form 4*b^n+1 for bases b>4 if exists * The smallest prime of the form 4*b^n-1 for bases b>4 if exists * The smallest prime of the form b^n+4 for bases b>4 with gcd(b,4)=1 for composite bases b (this condition is not needed if as LaurV's suggestion, the prime 10 (=b) is also excluded) if exists * The smallest prime of the form b^n-4 for bases b>4 with gcd(b,4)=1 if exists ... * The smallest prime of the form k*b^n+1 for fixed 1<=k<=b-1 (i.e. the prime for the CRUS Sierpinski conjecture for fixed 1<=k<=b-1) if exists * The smallest prime of the form k*b^n-1 for fixed 1<=k<=b-1 (i.e. the prime for the CRUS Riesel conjecture for fixed 1<=k<=b-1) if exists * The smallest prime of the form b^n+k for fixed 1<=k<=b-1 if exists * The smallest prime of the form b^n-k for fixed 1<=k<=b-1 if exists * The smallest prime of the form (k*b^n-1)/gcd(k-1,b-1) for fixed k with 0<=(k-1)/gcd(k-1,b-1)<=b-1 and gcd(k-1,b-1) < b-1 (this reason is because if the repeating digit is 1, then this prime may not be minimal prime (start with 2 digits), unless there are no repunit primes base b (e.g. b = 9, 25, 32, 49, 64, 81, ...) (i.e. the prime for the extended Riesel conjecture for fixed k satisfying these two conditions) if exists * The smallest prime of the form (b^n-k)/gcd(k-1,b-1) for fixed k with gcd(b,k) = 1 and 0<=k<=b-1
Related project searching for these primes:

* repunit primes base b:

http://www.fermatquotient.com/PrimSerien/GenRepu.txt
https://www.ams.org/journals/mcom/19...-1185243-9.pdf
https://web.archive.org/web/20021111...ds/primes.html
https://web.archive.org/web/20021114...ds/titans.html
https://listserv.nodak.edu/cgi-bin/w...;417ab0d6.0906

* generalized Fermat prime base b for even b:

http://yves.gallot.pagesperso-orange...mes/index.html
http://jeppesn.dk/generalized-fermat.html
http://www.noprimeleftbehind.net/crus/GFN-primes.htm
http://www.prothsearch.com/ (when b<=12)
http://www.primegrid.com/stats_genefer.php

* generalized half Fermat prime (> (b+1)/2) base b for odd b:

http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt
http://www.prothsearch.com/ (when b<=12)

* Williams prime with 1st kind base b:

https://harvey563.tripod.com/wills.txt
https://www.rieselprime.de/ziki/Williams_prime_MM_table
https://www.rieselprime.de/ziki/Williams_prime_MM_least
http://www.bitman.name/math/table/484
http://matwbn.icm.edu.pl/ksiazki/aa/aa39/aa3912.pdf
https://www.ams.org/journals/mcom/20...00-01212-6.pdf

* Williams prime with 2nd kind base b:

https://www.rieselprime.de/ziki/Williams_prime_MP_table
https://www.rieselprime.de/ziki/Williams_prime_MP_least
http://www.bitman.name/math/table/477

* Williams prime with 4th kind base b:

https://www.rieselprime.de/ziki/Williams_prime_PP_table
https://www.rieselprime.de/ziki/Williams_prime_PP_least
http://www.bitman.name/math/table/474

* dual Williams prime with 1st kind base b:

http://www.bitman.name/math/table/435 (when b is prime)

* prime of the form 2*b^n+1 for bases b:

https://mersenneforum.org/showthread.php?t=19725 (when b is prime and b == 11 mod 12)
https://primes.utm.edu/top20/page.php?id=37 (when b is prime and b == 11 mod 12)

* prime of the form b^n-2 for bases b:

https://www.primepuzzles.net/puzzles/puzz_887.htm (when b is prime)

* prime of the form k*b^n+1 for base b: (this prime is minimal prime (start with 2 digits) if k<b)

http://www.noprimeleftbehind.net/cru...onjectures.htm
http://www.noprimeleftbehind.net/cru...es-powers2.htm
https://www.utm.edu/staff/caldwell/preprints/2to100.pdf

(these three websites do not include the case where k > CK, thus the tables are not complete if the CK of this base b is <b)
(these three websites exclude the case where k is rational power of b, e.g. 4*32^n+1, for this case, see the link of generalized Fermat prime base b for even b)

https://www.rieselprime.de/ziki/Prot..._bases_least_n (for k<=12)

* prime of the form k*b^n-1 for base b: (this prime is minimal prime (start with 2 digits) if k<b)

http://www.noprimeleftbehind.net/cru...onjectures.htm
http://www.noprimeleftbehind.net/cru...es-powers2.htm

(these two websites do not include the case where k > CK, thus the tables are not complete if the CK of this base b is <b)

https://www.rieselprime.de/ziki/Ries..._bases_least_n (for k<=12)

* prime of the form (k*b^n-1)/gcd(k-1,b-1) in base b (this prime is minimal prime (start with 2 digits) if (k-1)/gcd(k-1,b-1) < b)

https://mersenneforum.org/attachment...3&d=1609098432

* Top proven primes
* Top PRPs

Last fiddled with by sweety439 on 2021-01-13 at 21:05

 2021-01-03, 05:22 #65 sweety439     "99(4^34019)99 palind" Nov 2016 (P^81993)SZ base 36 2·1,723 Posts In odd bases, the smallest prime of the form x{0}yz or xy{0}z (where x,y,z are odd digits) is always minimal prime (start with 2 digits), since in odd bases, any number whose digits sum is even are even numbers, thus cannot be prime.
 2021-01-03, 10:35 #66 sweety439     "99(4^34019)99 palind" Nov 2016 (P^81993)SZ base 36 65668 Posts Extended the search to bases 13 to 16, note that in base 16, family {5}45 is (16^n-49)/3, which can be factored as differences of squares, thus this family need not to be searched.

 Similar Threads Thread Thread Starter Forum Replies Last Post sweety439 sweety439 139 2022-04-23 20:44 sweety439 Miscellaneous Math 6 2019-11-25 07:37 davar55 Puzzles 13 2018-03-15 14:46 Flatlander Puzzles 40 2011-02-10 09:42 davar55 Puzzles 5 2008-11-02 00:08

All times are UTC. The time now is 04:40.

Mon Jun 27 04:40:35 UTC 2022 up 74 days, 2:41, 1 user, load averages: 0.92, 1.25, 1.32