![]() |
![]() |
#1 |
Mar 2018
52710 Posts |
![]()
344 and 559 are numbers that are sum of two positive cubes and product of two numbers of the form 6^j+7^k with j, k >=0. FOR EXAMPLE 344=43*8=7^3+1
Are there infinitely many such numbers? IS 16 THE ONLY perfect POWER SUM OF TWO CUBES AND PRODUCT OF TWO NUMERS OF THE FORM 6^J+7^K J, K NONNEGATIVE? Last fiddled with by enzocreti on 2020-02-15 at 12:06 |
![]() |
![]() |
![]() |
#2 | |
Aug 2006
174916 Posts |
![]() Quote:
Code:
16, 91, 344, 559, 1736, 2752, 4472, 8029, 9331, 12913, 14023, 20683, 71665, 74648, 207145, 326599, 373256, 375992, 941200, 942920, 1314440, 1688911, 4797295, 8456552, 12365695, 16283293, 23588209, 66926791, 80621576, 80624312, 81562760, 322828864, 322830584, 323202104, 362851489, 403450424, 17414258696, 17414261432, 17415199880, 17737087544, 110730297616, 110730299336, 110730670856, 110810919176, 128144556296, 3761479876616, 3761479879352, 3761480817800, 3761802705464, 3872210174216, 37980492079552, 37980492081272, 37980492452792, 37980572701112, 37997906338232, 41741971956152, 812479653347336, 812479653350072, 812479654288520, 812479976176184, 812590383644936, 850460145426872, 13027308783283600, 13027308783285320, 13027308783656840, 13027308863905160, 13027326197542280, 13031070263160200, 13839788436630920, 175495605123022856, 175495605123025592, 175495605123964040, 175495605445851704, 175495715853320456, 175533585615102392, 188522913906306440, 789831783010279009, 4468366912666272064, 4468366912666273784, 4468366912666645304, 4468366912746893624, 4468366930080530744, 4468370674146148664, 4469179392319619384, 4643862517789294904, 37907050706572935176, 37907050706572937912, 37907050706573876360, 37907050706895764024, 37907050817303232776, 37907088687065014712, 37920078015356218760, 42375417619239207224, 1532649851044531315216, 1532649851044531316936, 1532649851044531688456, 1532649851044611936776, 1532649851061945573896, 1532649854806011191816, 1532650663524184662536, 1532825346649654338056, 1570556901751104250376, 8187922952619753996296, 8187922952619753999032, 8187922952619754937480, 8187922952620076825144, 8187922952730484293896, 8187922990600246075832, 8187935979928537279880, 8192391319532420268344, 9720572803664285311496, 525698898908274241116352, 525698898908274241118072, 525698898908274241489592, 525698898908274321737912, 525698898908291655375032, 525698898912035720992952, 525698899720753894463672, 525699074403879364139192, 525736805958980814051512, 533886821860893995112632, 1768591357765866863198216, 1768591357765866863200952, 1768591357765866864139400, 1768591357765867186027064, 1768591357765977593495816, 1768591357803847355277752, 1768591370793175646481800, 1768595826132779529470264, 1770124007616911394513416, 2294290256674141104314552 If this is just the above problem, but asking for the numbers to be powers as well, there should be only finitely many, with 16 being presumably the only one. |
|
![]() |
![]() |
![]() |
#3 |
Aug 2006
3·1,987 Posts |
![]()
Broughan has an alternate approach if you don't like modern Thue methods:
https://cs.uwaterloo.ca/journals/JIS...roughan25.html |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Numbers of the form 41s+p or 43s+p | enzocreti | enzocreti | 0 | 2020-02-12 12:07 |
Continued product Carmichael numbers | devarajkandadai | Number Theory Discussion Group | 2 | 2019-09-24 03:14 |
Numbers of the form 41s+r | enzocreti | enzocreti | 4 | 2019-02-13 21:55 |
Formubla-bla-bla to calculate the sum of two Prime numbers just by knowing the product | Godzilla | Miscellaneous Math | 107 | 2016-12-06 17:48 |
Is every product of distinct Fermat numbers symmetrical in binary? | only_human | Puzzles | 9 | 2015-06-26 10:30 |