mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > sweety439

Reply
 
Thread Tools
Old 2020-12-22, 18:04   #1156
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 152

Code:
1,270217
2,796
3,3
4,1
5,12
6,1
7,1
8,2
9,1
10,5
11,14
12,1
13,23
14,343720
15,2
With CK=16

k=1 prime given by generalized repunit prime search, k=14 prime given by CRUS

Conjecture proven

Last fiddled with by sweety439 on 2021-02-11 at 05:23
sweety439 is offline   Reply With Quote
Old 2020-12-22, 18:13   #1157
sweety439
 
Nov 2016

1011000000112 Posts
Default Riesel base 153

Code:
1,3
2,2
3,1
4,3
5,1
6,2
7,2
8,1
9,(partial algebra factors)
10,2
11,2
12,21659
13,2
14,1
15,5
16,1
17,(partial algebra factors)
18,1
19,1
20,4
21,70
22,23
23,1
24,1
25,(partial algebra factors)
26,2
27,44
28,1
29,1
30,2
31,1
32,8
33,1
With CK=34

k=12 prime given by CRUS

(Condition 1):

All k where k = m^2 and m = = 3 or 5 mod 8:
for even n let k = m^2 and let n = 2*q; factors to:
(m*153^q - 1) * (m*153^q + 1)
odd n:
factor of 2

This includes k = 9, 25

(Condition 2):

All k where k = 17*m^2 and m = = 1 or 7 mod 8:
even n:
factor of 2
for odd n let k = 17*m^2 and let n=2*q-1; factors to:
[m*3^(2q-1)*17^q - 1] * [m*3^(2q-1)*17^q + 1]

This includes k = 17

Conjecture proven

Last fiddled with by sweety439 on 2021-02-11 at 05:28
sweety439 is offline   Reply With Quote
Old 2020-12-22, 18:18   #1158
sweety439
 
Nov 2016

2,819 Posts
Default

For the list of the CK, see https://github.com/xayahrainie4793/E...0to%202048.txt (Riesel) and https://github.com/xayahrainie4793/E...0to%202048.txt (Sierpinski)
sweety439 is offline   Reply With Quote
Old 2020-12-22, 19:09   #1159
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 154

Code:
1,5
2,1
3,1
4,(partial algebra factors)
5,1
6,1989
7,1
8,1
9,(partial algebra factors)
10,3
11,1
12,1
13,2
14,78
15,1
16,1
17,1
18,1
19,324
20,1
21,7
22,1
23,1
24,106
25,1
26,1
27,1
28,1
29,62
30,2
31,7
32,3
33,1
34,2
35,1
36,7
37,2
38,1
39,326
40,1
41,3
42,3
43,1
44,6
45,3
46,1
47,1
48,2
49,(partial algebra factors)
50,1
51,1
52,1
53,1
54,30
55,1
56,1
57,3
58,5
59,6
60,1
With CK=61

All k where k = m^2 and m = = 2 or 3 mod 5:
for even n let k = m^2 and let n = 2*q; factors to:
(m*154^q - 1) * (m*154^q + 1)
odd n:
factor of 5

This includes k = 4, 9, 49

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2020-12-22, 19:11   #1160
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 155

Code:
1,3
2,2
3,2
4,1
With CK=5

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2020-12-22, 19:12   #1161
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 156

Even the CK is unknown, it is only known that CK is >5M and <= 2113322677, and the CK equals 2113322677 if CK is neither == 1 mod 5 nor == 1 mod 31 (see CRUS condensed table)

(Condition 1):

All k where k = m^2 and m = = 28 or 129 mod 157:
for even n let k = m^2 and let n = 2*q; factors to:
(m*156^q - 1) * (m*156^q + 1)
odd n:
factor of 157

(Condition 2):

All k where k = 39*m^2 and m = = 56 or 101 mod 157:
even n:
factor of 157
for odd n let k = 39*m^2 and let n=2*q-1; factors to:
[m*2^(2*q-1)*39^q - 1] * [m*2^(2*q-1)*39^q + 1]

Last fiddled with by sweety439 on 2021-02-11 at 05:31
sweety439 is offline   Reply With Quote
Old 2020-12-22, 19:13   #1162
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 157

Code:
1,17
2,1
3,2
4,45
5,4
6,1
7,32
8,56
9,1
10,1
11,1
12,2
13,10
14,7
15,49
16,5
With CK=17

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2020-12-22, 19:16   #1163
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 158

Code:
1,7
2,2
3,2
4,1
5,2
6,1
7,39
8,20
9,35
10,1
11,18
12,2
13,1
14,4
15,17
16,17
17,14
18,1
19,1
20,34
21,2
22,7
23,6
24,9
25,19
26,2
27,19
28,1
29,0
30,9
31,9
32,4
33,5
34,5223
35,2
36,5
37,15
38,74
39,49
40,5
41,94
42,3
43,1
44,0
45,1
46,147
47,273942
48,1
49,1
50,2
51,3
With CK=52

k = 34, 47 primes given by CRUS

k = 29, 44 remain at n=300K by CRUS

Last fiddled with by sweety439 on 2021-02-25 at 22:37
sweety439 is offline   Reply With Quote
Old 2020-12-22, 19:18   #1164
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 159

Code:
1,13
2,1
3,2160
4,(partial algebra factors)
5,1
6,1
7,6
8,22
With CK=9

k=3 prime found by the project for k<=12 and bases <= 1024

All k where k = m^2 and m = = 2 or 3 mod 5:
for even n let k = m^2 and let n = 2*q; factors to:
(m*159^q - 1) * (m*159^q + 1)
odd n:
factor of 5

This includes k = 4

Conjecture proven

Last fiddled with by sweety439 on 2020-12-23 at 00:29
sweety439 is offline   Reply With Quote
Old 2020-12-22, 19:19   #1165
sweety439
 
Nov 2016

B0316 Posts
Default Riesel base 160

Code:
1,7
2,2
3,1
4,3
5,3
6,8
7,1
8,1
9,1
10,2
11,1
12,11
13,2
14,1
15,1
16,1
17,1
18,1
19,1
20,7570
21,1
With CK=22

k=20 prime given by CRUS

Conjecture proven

Last fiddled with by sweety439 on 2021-02-11 at 05:24
sweety439 is offline   Reply With Quote
Old 2020-12-22, 19:20   #1166
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 161

Code:
1,3
2,228
3,1
4,1
5,2
6,1
7,1
8,2
9,1
10,1
11,2
12,1
13,1
14,10
15,3
16,3
17,2
18,1
19,3
20,26
21,4
22,1
23,4
24,1
25,1
26,2
27,2
28,1
29,2
30,8
31,1
32,316
33,2
34,11
35,2
36,15
37,1
38,4
39,2
40,67
41,14
42,1
43,1
44,4
45,1
46,1
47,2
48,1
49,103
50,328
51,1
52,549
53,46
54,1
55,153
56,4
57,2
58,1
59,36
60,2
61,1
62,4
63,3
64,1
With CK=65

Conjecture proven
sweety439 is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
The dual Sierpinski/Riesel problem sweety439 sweety439 14 2021-02-15 15:58
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem sweety439 sweety439 11 2020-09-23 01:42
The reverse Sierpinski/Riesel problem sweety439 sweety439 20 2020-07-03 17:22
Sierpinski/ Riesel bases 6 to 18 robert44444uk Conjectures 'R Us 139 2007-12-17 05:17
Sierpinski/Riesel Base 10 rogue Conjectures 'R Us 11 2007-12-17 05:08

All times are UTC. The time now is 22:37.

Thu May 6 22:37:29 UTC 2021 up 28 days, 17:18, 0 users, load averages: 2.51, 2.32, 2.32

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.