20130921, 18:43  #925 
May 2010
Prime hunting commission.
2^{4}×3×5×7 Posts 
Bumping:
209610*53^{25760}+1 (44423 digits) Primality testing 209610*53^25760+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 2 Special modular reduction using zeropadded AMD K10 type1 FFT length 20K, Pass1=80, Pass2=256 on 209610*53^25760+1 Calling BrillhartLehmerSelfridge with factored part 99.99% 209610*53^25760+1 is prime! (117.0467s+0.0208s) 
20130923, 03:10  #926 
May 2010
Prime hunting commission.
2^{4}·3·5·7 Posts 
More primes:
80256*6^{30766}+1 (23946 digits) Primality testing 80256*6^30766+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 5 Special modular reduction using allcomplex AMD K10 type1 FFT length 8K, Pass1=32, Pass2=256 on 80256*6^30766+1 Running N1 test using base 23 Special modular reduction using allcomplex AMD K10 type1 FFT length 8K, Pass1=32, Pass2=256 on 80256*6^30766+1 Running N1 test using base 29 Special modular reduction using allcomplex AMD K10 type1 FFT length 8K, Pass1=32, Pass2=256 on 80256*6^30766+1 Calling BrillhartLehmerSelfridge with factored part 61.30% 80256*6^30766+1 is prime! (52.2363s+0.0048s) 28301*2^{28657}+1 (8632 digits) Primality testing 28301*2^28657+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex FFT length 2K on 28301*2^28657+1 Calling BrillhartLehmerSelfridge with factored part 99.95% 28301*2^28657+1 is prime! (1.3308s+0.0056s) Part of a range for k * 3^14500 + 1: Code:
Primality testing 30146*3^14500+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 2 Special modular reduction using allcomplex FFT length 2K on 30146*3^14500+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 30146*3^14500+1 is prime! (1.0725s+0.0044s) Primality testing 30922*3^14500+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 2 Special modular reduction using allcomplex FFT length 2K on 30922*3^14500+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 30922*3^14500+1 is prime! (1.0759s+0.0055s) Primality testing 33768*3^14500+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 11 Special modular reduction using allcomplex FFT length 1536 on 33768*3^14500+1 Calling BrillhartLehmerSelfridge with factored part 99.95% 33768*3^14500+1 is prime! (0.8555s+0.0045s) Primality testing 41736*3^14500+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 5 Special modular reduction using allcomplex FFT length 2K on 41736*3^14500+1 Running N1 test using base 13 Special modular reduction using allcomplex FFT length 2K on 41736*3^14500+1 Calling BrillhartLehmerSelfridge with factored part 99.94% 41736*3^14500+1 is prime! (2.0989s+0.0052s) Primality testing 41878*3^14500+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex FFT length 2K on 41878*3^14500+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 41878*3^14500+1 is prime! (1.0593s+0.0051s) Primality testing 55492*3^14500+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 2 Special modular reduction using allcomplex FFT length 2K on 55492*3^14500+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 55492*3^14500+1 is prime! (1.0714s+0.0083s) Primality testing 64892*3^14500+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 2 Special modular reduction using allcomplex FFT length 2K on 64892*3^14500+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 64892*3^14500+1 is prime! (1.0628s+0.0083s) 
20130923, 12:11  #927 
May 2010
Prime hunting commission.
2^{4}·3·5·7 Posts 
moar:
93283*2^{95606}+1 (28786 digits) Primality testing 93283*2^95606+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex AMD K10 type1 FFT length 8K, Pass1=32, Pass2=256 on 93283*2^95606+1 Calling BrillhartLehmerSelfridge with factored part 99.98% 93283*2^95606+1 is prime! (49.2659s+0.0040s) edit: range for k * 2^23380 + 1 Code:
Primality testing 75555*2^23380+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 11 Special modular reduction using allcomplex FFT length 2K on 75555*2^23380+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 75555*2^23380+1 is prime! (0.8516s+0.0037s) Primality testing 78073*2^23380+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex FFT length 2K on 78073*2^23380+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 78073*2^23380+1 is prime! (0.8585s+0.0032s) Primality testing 94893*2^23380+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 7 Special modular reduction using allcomplex FFT length 2K on 94893*2^23380+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 94893*2^23380+1 is prime! (0.8495s+0.0037s) Primality testing 112525*2^23380+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex FFT length 2K on 112525*2^23380+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 112525*2^23380+1 is prime! (0.8538s+0.0034s) Primality testing 122065*2^23380+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex FFT length 2K on 122065*2^23380+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 122065*2^23380+1 is prime! (0.8529s+0.0037s) Primality testing 122851*2^23380+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex FFT length 2K on 122851*2^23380+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 122851*2^23380+1 is prime! (0.8502s+0.0034s) Primality testing 128305*2^23380+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex FFT length 2K on 128305*2^23380+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 128305*2^23380+1 is prime! (0.8536s+0.0034s) Primality testing 141817*2^23380+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 3 Special modular reduction using allcomplex FFT length 2K on 141817*2^23380+1 Calling BrillhartLehmerSelfridge with factored part 99.93% 141817*2^23380+1 is prime! (0.8488s+0.0035s) Last fiddled with by 3.14159 on 20130923 at 12:46 
20130923, 15:17  #928 
May 2010
Prime hunting commission.
3220_{8} Posts 
moar stuff:
319629*2^{80790}+1 (24326 digits) Primality testing 319629*2^80790+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 5 Special modular reduction using allcomplex AMD K10 type1 FFT length 8K, Pass1=32, Pass2=256 on 319629*2^80790+1 Calling BrillhartLehmerSelfridge with factored part 99.98% 319629*2^80790+1 is prime! (15.6100s+0.0039s) Last fiddled with by 3.14159 on 20130923 at 15:18 
20130923, 16:20  #929 
May 2010
Prime hunting commission.
1680_{10} Posts 
About the thread's name change, I'd post something top5000 worthy, but I'd need to get back to you in roughly 6 ~ 10 years.
Last fiddled with by 3.14159 on 20130923 at 16:23 
20130923, 16:31  #930  
Sep 2002
Database er0rr
3^{2}·11·37 Posts 
Quote:
Last fiddled with by paulunderwood on 20130923 at 16:33 

20130923, 18:26  #931 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
22311_{8} Posts 
There is a certain demand for small and even very small (but not totally random) primes in the Conjectures 'R Us and No Prime Left Behind subforums (and others).
For example: here, or here, or here. M.Kamada is also interested in small primes and PRPs: one can take any series (here for example) and extend it. In contrast, if one wants to do numbers that are not of interest to anyone else, then the only way to get people excited is to get the reasonably big (to enter top5000 or, a bit easier target, the PRP Lifchitz site). There needs to be a system that these numbers support ...or else of course one can simply start an endless Pari/GP loop Code:
p=10^1567; while(1,p=nextprime(p+1);print(p)) 
20130924, 00:06  #932 
May 2010
Prime hunting commission.
2^{4}·3·5·7 Posts 
Bumping with this:
5397*10!^1250+1 is 3PRP! (15.6527s+0.0013s) (8204 digits) Last fiddled with by 3.14159 on 20130924 at 00:14 
20130924, 16:54  #933 
May 2010
Prime hunting commission.
3220_{8} Posts 
Anyone want to prove this one for me?
14^5650 + 189373 is PRP, 6476 digits. Last fiddled with by 3.14159 on 20130924 at 16:54 
20130924, 17:37  #934 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
22311_{8} Posts 
I will gladly prove yours, after you will prove mine:
14^9217189373 It's a deal of your lifetime, don't miss it! (Took me a whole of five minutes to find it, too. It must be very valuable!) 
20130924, 19:42  #935 
May 2010
Prime hunting commission.
1680_{10} Posts 

Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Prime posting thread, part 2. (With a catch.)  3.14159  Miscellaneous Math  55  20101119 23:55 
Tiny range request .... 555.1M  petrw1  LMH > 100M  1  20100713 15:35 
Other primes thread  nuggetprime  No Prime Left Behind  32  20091021 21:48 
Error: tiny factoring failed  10metreh  Msieve  26  20090308 23:28 
Tiny error on nfsnet pages.  antiroach  NFSNET Discussion  1  20030708 00:27 