mersenneforum.org > Math Carmichael Numbers II
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2004-09-14, 02:35 #1 devarajkandadai     May 2004 22×79 Posts Carmichael Numbers II A CONJECTURE Let N = p1p2....pr The necessary and sufficient condition for N, an r-factor composite number, to be a Carmichael Number: (p1-1)(N-1)^(r-2)/ (p2-1)(P3-1)....(pr-1), (p2-1)(N-1)^(r-2)/ (p1-1)(p3-1)... (pr-1), . . . (pr-1)(N-1)^(r-2)/(p1-1)......... (p(r-1)-1) should ALL be integers. A.K. Devaraj
 2004-09-16, 06:06 #2 devarajkandadai     May 2004 4748 Posts Carmichael Numbers II I would be surprised if anyone can show a counter example. Devaraj

 Similar Threads Thread Thread Starter Forum Replies Last Post devarajkandadai Number Theory Discussion Group 0 2017-07-09 05:07 Stan Miscellaneous Math 19 2014-01-02 21:43 devarajkandadai Miscellaneous Math 2 2013-09-08 16:54 devarajkandadai Miscellaneous Math 0 2006-08-04 03:06 devarajkandadai Math 0 2004-08-19 03:12

All times are UTC. The time now is 17:42.

Fri Jan 28 17:42:40 UTC 2022 up 189 days, 12:11, 1 user, load averages: 2.16, 1.74, 1.52

Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔