![]() |
![]() |
#254 |
Jan 2007
Germany
54 Posts |
![]()
Okay, after reaching 1e17 , I will send OEIS a new b-file.
|
![]() |
![]() |
![]() |
#255 | |
Jan 2007
Germany
10011100012 Posts |
![]()
Update 9.3e16-9.4e16
Quote:
|
|
![]() |
![]() |
![]() |
#256 | |
Jan 2007
Germany
54 Posts |
![]()
Update 9.4e16-9.4989e16
Quote:
|
|
![]() |
![]() |
![]() |
#257 | |
Jan 2007
Germany
54 Posts |
![]()
Update: 9.5e16 - 9.6e16
Quote:
|
|
![]() |
![]() |
![]() |
#258 | |
Jan 2007
Germany
54 Posts |
![]()
Update: 9.6e16 - 9.7e16
Quote:
|
|
![]() |
![]() |
![]() |
#259 | |
Jan 2007
Germany
54 Posts |
![]()
Update 9.7e16 - 9.8e16
Quote:
|
|
![]() |
![]() |
![]() |
#260 | |
Jan 2007
Germany
54 Posts |
![]()
A just for fun table....
Quote:
Last fiddled with by Cybertronic on 2023-01-07 at 15:49 |
|
![]() |
![]() |
![]() |
#261 |
Jan 2007
Germany
62510 Posts |
![]()
9.8 - 9.9e16
4872 98178542270123129 5152 98370851264622917 4633 98378002461666329 5056 98590143800904911 |
![]() |
![]() |
![]() |
#262 |
Jan 2007
Germany
54 Posts |
![]()
Searching up to 10^17 complete (k<=1.66666...e16)
https://pzktupel.de/RecordGaps/GAP02.php Latest open gaps found: 4861 99530388665966831 4951 99896889053870801 I stop here.... Last fiddled with by Cybertronic on 2023-01-10 at 21:11 |
![]() |
![]() |
![]() |
#263 |
Dec 2008
you know...around...
32×5×19 Posts |
![]()
Ever looking for irregularities in the prime number distribution, as a generalization to gaps between twin primes, I considered gaps between consecutive prime pairs {p, p+d} for even d > 2. (So e. g. with d = 4, we're looking at gaps between cousin primes.) Specifically, I'm once again focusing on exceptionally large gaps, similar to "CSG > 1" between regular prime gaps, in this case the comparative measure for such a large gap (which may be exceeded only finitely often for fixed d) is \(\large \sqrt{\frac{2 c_2}{(\frac{2 c_2}{gap} \cdot \int_{start\:p}^{end\:p} \frac{\text{d} t}{\log t \cdot \log (t+d)})^3}}\) if d mod 3 <> 0, and \(\large \sqrt{\frac{4 c_2}{(\frac{4 c_2}{gap} \cdot \int_{start\:p}^{end\:p} \frac{\text{d} t}{\log t \cdot \log (t+d)})^3}}\) if d mod 3 = 0, where \(c_2\) is the twin prime constant 0.6601618... .
Here are some exceptionally large gaps (d<=15000, p<10000000): Code:
d gap start p end p expected * CSG equivalent 96 792 287501 288293 13.23514749702 1.052871552102 1038 106 283 389 6.666569300312 1.028834379845 1374 46 7 53 5.274758801878 1.099182477006 1396 240 337 577 6.895143207451 1.017112792979 1758 1404 4968829 4970233 15.59424518190 1.011364690747 1926 1568 8944073 8945641 16.16043348677 1.009604514475 2154 46 7 53 4.971179604627 1.005669014240 2448 450 26981 27431 11.30113354517 1.102101408721 2648 750 17033 17783 10.23718319847 1.040878128217 2804 1056 60923 61979 11.42236266670 1.033860065575 2972 600 8147 8747 9.378221048165 1.020386899216 3102 320 10211 10531 9.610917222022 1.024983961588 3288 302 4289 4591 10.60689435095 1.223273864676 3428 396 1583 1979 8.165543494411 1.020445590697 3558 1188 1586161 1587349 15.38765793633 1.077693761422 <-- 3642 162 647 809 7.746986607389 1.042525062759 } interesting! 3888 1110 1586191 1587301 14.37715965943 1.006915341704 <-- 4192 798 22699 23497 10.26649948449 1.013425762962 4402 2436 1638061 1640497 15.70403218868 1.097331698777 4596 1376 3705347 3706723 15.88090710355 1.049901472763 4602 486 13921 14407 13.64510715424 1.406993512761 <-- largest known CSG equivalent 5228 2046 1054043 1056089 14.03892506112 1.012063519611 6186 1170 2108627 2109797 14.56724110104 1.000271362864 5204 198 29 227 6.539921041165 1.034393931617 6304 258 19 277 8.235396562418 1.280491570678 6328 480 1789 2269 9.219128862252 1.111921201591 6662 288 179 467 7.498612534161 1.053015898018 6852 280 4651 4931 9.319135901047 1.046235027387 7928 810 8009 8819 12.19835757557 1.302774748457 8094 1068 1348619 1349687 14.14935522055 1.002222508440 8604 316 2887 3203 11.11155044769 1.282222094500 10674 2100 8037439 8039539 21.93374343273 1.379444700673 11224 1668 203659 205327 14.66397442453 1.196573334288 12332 1422 187409 188831 12.66287435404 1.039940399644 13012 2010 912511 914521 14.07346079495 1.024856675921 13428 948 717191 718139 13.74991956012 1.019039155011 14268 776 282713 283489 12.95211437279 1.029733755338 14986 1140 84391 85531 11.51930604377 1.007736180365 * expected average number of prime pairs p+{0,d} in the gap, or "merit" equivalent |
![]() |
![]() |
![]() |
#264 |
Jan 2007
Germany
54 Posts |
![]()
The lowest known merit for twins is: merit = 0,0000000145553806...
It is a consequence of the largest known prime quadruplet with 10132 digits. ![]() Last fiddled with by Cybertronic on 2023-01-29 at 11:38 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Mersenne Primes p which are in a set of twin primes is finite? | carpetpool | Miscellaneous Math | 4 | 2022-07-14 02:29 |
Gaps between maximal prime gaps | Bobby Jacobs | Prime Gap Searches | 52 | 2020-08-22 15:20 |
I found a sieve to search all pairs of twin primes | Pietro Maiorana | Twin Prime Search | 8 | 2019-09-26 23:07 |
find very easy twin prime in the infamy twin primes | hal1se | Miscellaneous Math | 13 | 2018-11-05 16:34 |
Gaps of Primes? | PawnProver44 | Miscellaneous Math | 10 | 2016-04-10 19:32 |