mersenneforum.org Very Prime Riesel and Sierpinski k
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2008-02-09, 05:12 #23 robert44444uk     Jun 2003 Oxford, UK 25×32×7 Posts Sorry been out of the loop. Here is the list from last week on new Payam VPS 61's R 4237605251199 61 100/9042 101/10000 117/20000 129/48714 R 3454244358239 61 100/6100 107/10000 115/20000 R 4484344243755 61 100/9481 104/10000 112/20000 R 2997280737989 61 100/8210 100/10000 111/20000 R 4321264026225 61 100/9470 100/10000 111/20000 R 4445595365641 61 100/9822 100/10000 111/20000 R 2853368710009 61 100/9310 101/10000 110/20000 R 2958974750767 61 100/9898 101/10000 110/20000 R 3468108555441 61 100/9882 101/10000 110/20000 R 4470681532631 61 100/8372 100/10000 110/20000 R 2916740069451 61 100/8981 103/10000 109/20000 R 3462599603041 61 100/8954 101/10000 108/20000 R 4031837397447 61 100/8706 100/10000 106/20000 R 3441114290305 61 100/9546 100/10000 104/20000 Near misses R 3396843248155 61 99/10000 R 3590636449447 61 99/10000 R 3812607361279 61 99/10000 R 3836786856915 61 99/10000 R 4281080931105 61 99/10000
 2009-09-23, 15:22 #24 robert44444uk     Jun 2003 Oxford, UK 25·32·7 Posts Most prime series yet I am currently reexploring payam prime series, and as of tonight I have two new enormously prime series of the form y*M(83)*2^n+1, n from 1 to infinity, y fixed and M(83) the payam multiple of 3*5*11*13*19*29*37*53*59*61*67*83. The two series have 134 and 129 primes at n=30,000. The more prime of the two is the fastest to 134 primes ever found, with the 134th prime reached at n=27,762. I will post more details when I get to n=100,000, if these are still performing well (148 primes or more). Last fiddled with by robert44444uk on 2009-09-23 at 15:24
 2009-09-23, 19:42 #25 R. Gerbicz     "Robert Gerbicz" Oct 2005 Hungary 5FA16 Posts Robert, where can I find all known VPS Payam numbers? Last fiddled with by R. Gerbicz on 2009-09-23 at 19:44
2009-09-23, 23:19   #26
kar_bon

Mar 2006
Germany

29×101 Posts

Quote:
 Originally Posted by R. Gerbicz Robert, where can I find all known VPS Payam numbers?
i've included some of the Riesel-side with data from Robert on www.rieselprime.de.

see menu 'Related -> Riesel-Payem"

2009-09-24, 15:25   #27
robert44444uk

Jun 2003
Oxford, UK

111111000002 Posts

Quote:
 Originally Posted by R. Gerbicz Robert, where can I find all known VPS Payam numbers?
You might look here, it is out of date a bit, but I am the only person on the planet looking at these right now (!!!!!!!!!!!)

So I will update when I get the chance

A Study of Very Prime Payam Number Series - Word document

2009-09-24, 15:26   #28
robert44444uk

Jun 2003
Oxford, UK

25×32×7 Posts

Quote:
 Originally Posted by robert44444uk I am currently reexploring payam prime series, and as of tonight I have two new enormously prime series of the form y*M(83)*2^n+1, n from 1 to infinity, y fixed and M(83) the payam multiple of 3*5*11*13*19*29*37*53*59*61*67*83. The two series have 134 and 129 primes at n=30,000. The more prime of the two is the fastest to 134 primes ever found, with the 134th prime reached at n=27,762. I will post more details when I get to n=100,000, if these are still performing well (148 primes or more).
Not performing well from 30K to 43K but will persist

 2009-09-27, 00:45 #29 R. Gerbicz     "Robert Gerbicz" Oct 2005 Hungary 2×32×5×17 Posts I'm writing a code in gmp for the problem.
2009-09-27, 04:12   #30
robert44444uk

Jun 2003
Oxford, UK

25×32×7 Posts

Quote:
 Originally Posted by R. Gerbicz I'm writing a code in gmp for the problem.
Brilliant!!! love to understand your approach.

 2009-09-28, 17:43 #31 R. Gerbicz     "Robert Gerbicz" Oct 2005 Hungary 27728 Posts Now I completed my code: have a look at my site: http://robert.gerbicz.googlepages.com/payam This is all in one program, contains many type of sieves to speed up the code, but only one fermat test for the primality (so there is a very small chance that the correct number of primes is smaller than the displayed value). When tested I found the following (new?) solutions (I stopped my programs, tested only E=52, not much about one-two day of computation). (for these riesels lost the data when it hits the 100th prime.) R 279853706635 52 100/10000 K=648615843039215090325 R 1498340918709 52 105/10000 K=3472698896270561741355 R 1238363638869 52 102/10000 K=2870150569996671516555 S 1067246716655 52 100/7771 103/10000 K=2473553547592864962225 S 2000762814915 52 100/9824 100/10000 K=4637160163149703256925 S 740179134037 52 100/9739 100/10000 K=1715510288558036485515 S 732686633037 52 100/6580 105/10000 K=1698144948248552890515 S 2524404303887 52 100/6046 104/10000 K=5850801997320093221265 S 982750260367 52 100/8532 101/10000 K=2277716440812829166865 S 864230647989 52 100/9769 100/10000 K=2003023998023424902955 S 197278850743 52 100/7259 105/10000 K=457232421993138948585 You need two files to use it (it will ask no additional input) in.txt contains various parameters for the problem. progress.txt has got only 4 values: c, where c=1 (sierpinski) or c=-1 (riesel), the E value, the iteration number (this is counter of the outer cycle) iteration=0 solves the problem for the first about 3*10^12 K values, iteration=1 solves it in the (3*10^12,6*10^12) interval and so on. But this would take days to complete an iteration so there is an inner cycle to divide one iteration to 120960 subproblems, this is the I value, by giving it the program will start from this I value. When I reaches 120960 then iteration will be bigger by one, and I=0. The in.txt file is a little more complicated, there are some obvious parameters. Note that I'm computing also the Nash weight for the sequence, because by this I can predict the number of remaining primes, I'm using a weaker form (not to lost a solution): #(total number of primes found so far)+c0*#(expected number of primes from Nash)+c1. Increasing the c0,c1 value makes the sieve slower, but you can find a little more sequence. Balance this. If n reaches various number then I'm using a different sieve depth: number_of_sievebits is the levels for sieve, currently this is 7, and the offset: 11 64 13 128 15 256 18 512 21 1024 24 2048 27 4096 so sieving up to 2^11 if n=64 reached,..., up to 2^27 if n=4096 reached. Note that this is also the sievelimit=2^27. Your heuristic check is also included (as smith check), the table is exactly what I found at your site (currently this means 8 levels). Optimize these (you can change the number of levels, but use increasing order when you describe the levels). By setting zero for nash_check or smith_check you can disable these checks in the code. By boundforquickcheck I make an additional quick elimination using many primes up to this bound. Currently this value should be good. Setting this very high is pointless (elminates very few sequences and takes time). nashsievelimit is 500 currently. Note that this equals to the initial sieve depth. So if there is no Nash check, then not lower this value. timesave 60. Saves the E,c,iteration,I values in progress.txt in every 60 seconds, but only if we are not checking a sequence, so it means that there will be a save only after half an hour if we are checking a very good payam. In results.txt file I also save every vps numbers. The code is valid for E>=52. Ask if you don't understand something.
 2009-09-29, 07:06 #32 robert44444uk     Jun 2003 Oxford, UK 25·32·7 Posts Gosh, a new toy..thank you so much Robert, I will give this a go, that is for sure. The list of payam VPS for Sierpinski, before R Gerbicz's discoveries, is: Code: Rank E y n p=primes p/ln(n) 100 p at n= Notes 1 59 708477982733 353045 169 13.230 7815 2 59 201456540759 137581 152 12.847 6929 3 107 224425208891 105413 148 12.797 7884 Done as 101-24013497351337 4 83 8648987274287 53961 139 12.757 7874 5 83 2266756289325 51015 138 12.731 7034 6 59 520294740741 123329 149 12.710 7970 7 67 2158430601663 174566 153 12.676 5496 8 53 748868434461 113183 147 12.632 4584 9 67 4217062025887 170000 152 12.621 6634 10 59 241489693273 126324 147 12.514 8938 11 67 3830573300695 113977 145 12.453 6063 12 59 49564242661 116957 144 12.340 5774 Done as 53- 2924290316999 13 67 244078509453 100112 142 12.333 9459 14 67 3274457656551 128894 145 12.323 8422 15 67 1691908298101 110287 143 12.316 6356 16 59 748236995639 128980 144 12.237 6592 17 59 33936630553 96274 140 12.200 7515 Done as 53-2002261202627 18 83 491867720503 88968 139 12.197 8064 19 101 21475115323671 124388 143 12.190 9589 20 101 95527332753853 112374 141 12.124 9694 21 53 1108828374241 126708 142 12.085 3258 22 101 100848501131179 135522 142 12.017 8240 23 67 4169065599069 97356 138 12.014 9413 24 61 761114361105 165526 144 11.983 9591 25 53 2088021538507 121242 140 11.960 6029 26 83 1198899076961 46968 128 11.899 7326 27 101 154597862545015 85569 135 11.887 8916 28 101 192982750577891 125493 139 11.840 7193 29 53 2793145615989 70337 132 11.827 5621 30 83 16606496583 40100 125 11.793 6110 Done as 67-1378339216389 31 67 132931011017 37004 124 11.788 4628 32 59 354663797011 44321 126 11.777 8384 33 83 2931487359433 75195 132 11.756 8094 34 67 650072358489 27810 120 11.727 7482 35 53 1030943838005 43187 125 11.711 7562 36 83 5187739022961 28368 120 11.704 4951 37 59 44549431055 36787 123 11.700 7066 38 83 58721022127 31144 121 11.695 6179 39 67 1639585686921 32011 121 11.664 8626 40 59 581338538697 25170 118 11.645 9084 41 53 1782926020855 25833 118 11.615 7256 42 101 48568720015071 20000 115 11.612 7178 43 53 2632245983931 28434 119 11.604 8276 44 61 18450742305 37335 122 11.588 9462 45 61 5274320251 31434 120 11.588 9603 46 101 3196190228975 29110 119 11.577 8490 47 67 2882469181769 31919 120 11.571 7824 48 53 1394429459529 24646 117 11.570 8420 49 107 39508074262189 38527 122 11.554 8399 50 53 246580719613 27749 118 11.534 7136 51 53 223580243791 33314 120 11.523 7687 52 67 2232861808559 28242 118 11.514 7652 53 83 1215507650411 47628 124 11.512 7597 54 83 7245887932337 20000 114 11.511 8903 55 67 4195586470999 22000 115 11.501 7595 56 67 135980427451 20230 114 11.498 9257 57 83 157639428379 26587 117 11.484 6690 58 67 643697078775 20560 114 11.479 9351 59 107 216263008344019 32592 119 11.451 9897 60 53 1106093443175 42374 122 11.451 9387 61 59 838422520523 25578 116 11.429 6134 62 101 7822821559961 25615 116 11.428 9987 63 67 1102272321579 20000 113 11.410 6881 64 83 2986006925223 20017 113 11.409 8415 65 67 755584622563 21960 114 11.403 9797 66 101 86475926712443 26415 116 11.393 7535 67 53 1439338251 27569 116 11.345 6149 68 53 181681767761 33197 118 11.335 7062 69 53 2562457278273 21555 113 11.325 8668 70 67 3626325799905 30739 117 11.323 8316 71 61 126014792173 52310 123 11.321 7542 72 53 887074003901 20000 112 11.309 9434 75 83 721457110513 20000 112 11.309 9531 74 83 4787038083625 20000 112 11.309 8794 73 83 10200107805041 20000 112 11.309 8118 76 53 2367521100037 20029 112 11.307 9590 77 83 5105032597357 21975 113 11.303 7080 78 101 171652306377675 20317 112 11.291 7261 79 67 1111147210737 22200 113 11.291 8002 80 67 2807554854083 24525 114 11.279 8779 81 67 14227569099675 18910 111 11.272 9610 82 67 1166880299109 18910 111 11.272 7795 83 101 75903439364915 27353 115 11.256 9297 84 101 19743600960335 27362 115 11.256 9487 85 61 583625072025 30000 116 11.252 8464 86 101 190423530464325 32919 117 11.248 9127 87 101 109139135495845 21162 112 11.245 9070 88 61 216022607101 27655 115 11.244 9149 89 67 133290101259 21460 112 11.229 9993 90 53 1322845239177 26088 114 11.210 9940 91 53 2732995339057 20000 111 11.208 7743 92 59 546421435843 20000 111 11.208 9134 93 59 387304364559 20000 111 11.208 8974 94 67 2934187788435 20000 111 11.208 9885 95 83 3966811064579 20000 111 11.208 9784 98 83 11613098507093 20000 111 11.208 9387 97 83 11730030736641 20000 111 11.208 9244 96 83 1268045994659 20000 111 11.208 7251 99 83 4189509745483 17000 109 11.190 7487 100 67 3953819504565 22500 112 11.176 9460 101 67 2528619568769 29523 115 11.173 8172 102 53 2618147732705 20640 111 11.173 8620 103 53 2206204972241 14450 107 11.171 9577 104 53 215886220855 14450 107 11.171 8682 105 53 2516441148893 14450 107 11.171 8541 106 53 1662290560099 14450 107 11.171 8127 107 53 2229929826019 14450 107 11.171 8097 108 59 68102182393 16000 108 11.157 9920 109 59 323109341021 16000 108 11.157 7841 110 67 1370090826199 21000 111 11.153 7906 111 67 3801806524317 30101 115 11.152 8197 112 37 198314124283 20000 110 11.107 9184 113 53 2030780730455 18289 109 11.107 9931 114 53 2630773010587 14115 106 11.094 8353 115 67 1789583243673 113765 129 11.081 6261 116 37 176776697181 10000 102 11.075 8030 117 67 4041645718707 10000 102 11.075 7549 118 67 3846443304797 10000 102 11.075 6356 119 53 879944491239 14450 106 11.067 9131 120 53 2291356967435 14450 106 11.067 9039 121 53 1806872869235 14450 106 11.067 8746 122 53 1390617022279 14450 106 11.067 8311 123 29 547038013 17442 108 11.058 8129 125 59 512528281705 16000 107 11.053 9418 124 59 177646354161 16000 107 11.053 9136 126 59 514472660303 16000 107 11.053 7819 127 67 498179107913 21010 110 11.052 9935 128 53 70073251271 16073 107 11.048 9977 129 59 636331922397 21148 110 11.045 7117 130 67 3026077759051 13500 105 11.040 9007 131 67 3794179552947 13500 105 11.040 8892 132 67 4152485119483 13500 105 11.040 8270 133 67 3384136174759 13500 105 11.040 8006 134 67 2253302898127 13500 105 11.040 7743 135 107 3528240874503 19549 109 11.032 8662 136 37 255911170795 19630 109 11.027 9086 137 67 143567524087 19712 109 11.022 9893 138 67 1175624915339 19800 109 11.017 8719 139 53 2662257628835 23752 111 11.017 8353 140 61 197793964319 28717 113 11.008 7081 141 29 373703051 20000 109 11.006 8409 142 61 48622210669 28850 113 11.003 8016 143 101 37933879098593 24224 111 10.995 9060 144 61 38886476903 31866 114 10.994 9793 145 83 4241660982683 10767 102 10.986 8096 146 67 18914454038503 18910 108 10.967 8397 147 59 708240321809 18931 108 10.966 8524 148 67 1583098704779 10000 101 10.966 8615 149 61 406713450161 27685 112 10.950 8263 150 83 2508280254913 12300 103 10.937 8884 151 83 3100447231731 12300 103 10.937 8183 152 67 2248422362825 13500 104 10.935 9920 153 67 925777324893 13500 104 10.935 9549 154 67 3213814677791 13500 104 10.935 9493 155 67 22334461555 13500 104 10.935 9443 156 67 2374195442249 13500 104 10.935 9362 157 67 1026619279015 13500 104 10.935 8930 158 107 171176144825869 28101 112 10.934 8473 159 59 491580860277 15000 105 10.920 9936 160 59 657752151441 15000 105 10.920 9444 161 61 195989400097 20000 108 10.905 9439 162 67 2093234092849 20000 108 10.905 8573 163 83 5855022739083 20000 108 10.905 8483 164 83 1806361620889 26341 111 10.905 7464 165 37 133581656467 18300 107 10.902 8013 166 53 768440105325 20749 108 10.865 9454 167 53 696219338021 14450 104 10.858 9515 168 53 1843822052193 14450 104 10.858 9132 169 53 2919421195929 14450 104 10.858 8597 170 53 1568680504507 14450 104 10.858 8526 171 83 3111030987175 25112 110 10.858 7841 172 37 218268558295 10000 100 10.857 9825 173 53 863106968087 10000 100 10.857 9947 174 53 1931888563731 10000 100 10.857 9796 175 101 88475910866235 10000 100 10.857 9725 176 83 4942274044547 12300 102 10.831 9730 177 67 1206204060651 13500 103 10.830 8839 178 67 325914572859 13500 103 10.830 8817 179 67 3977890351863 13500 103 10.830 7253 180 101 34964416850395 17860 106 10.827 9528 181 37 147377655077 20000 107 10.804 8008 183 83 9079836090073 20000 107 10.804 9726 182 83 12228640605139 20000 107 10.804 9666 184 53 685900043171 20347 107 10.786 9951 185 61 933294678535 14097 103 10.781 9866 186 53 353454181481 19030 106 10.757 8636 187 53 2530657964501 14450 103 10.753 9815 188 67 2158846621199 13500 102 10.725 8697 189 59 316104583913 15000 103 10.712 9910 190 83 5780208112465 18100 105 10.710 8853 191 67 3982074999875 21100 106 10.646 8634 192 53 415571569029 16073 103 10.635 9483 193 83 568584531317 12300 100 10.619 9899 194 61 586780960367 20499 105 10.576 9581 195 37 236033583093 19204 104 10.545 9545
 2009-09-29, 07:09 #33 robert44444uk     Jun 2003 Oxford, UK 25×32×7 Posts And that for Riesels (sorry for any duplicates): Code: Rank E y n p=primes p/ln(n) 100p at n= Discoverer 1 60 638621868573 233805 162 13.104 8110 R. Chaglassian 2 58 196866927943 75000 145 12.917 6617 R. Chaglassian 3 100 38612012001591 70000 143 12.818 6306 R Smith 4 82 1634620998691 75000 142 12.650 7237 R. Chaglassian 5 82 1923109539243 75000 140 12.472 6261 R. Chaglassian 6 58 660288556697 76281 140 12.453 6167 R Smith 7 82 534443544481 75000 139 12.383 9749 R. Chaglassian 8 60 868800846205 75000 138 12.294 9686 R. Chaglassian 9 82 2903265685133 75000 138 12.294 8077 R. Chaglassian 10 82 3595866123809 75924 138 12.280 9210 R Smith 11 106 336458226173 74709 137 12.209 9642 R Smith 12 52 98213127897 75000 137 12.205 6863 R. Chaglassian 13 66 295804381687 50000 132 12.200 8984 R. Chaglassian 14 60 2342836014713 70629 136 12.181 6520 R Smith 15 52 72702941519 75000 136 12.116 6724 R. Chaglassian 16 58 782507407593 75000 136 12.116 7734 R. Chaglassian 17 60 4237605251199 48714 129 11.951 9042 R Smith 18 60 4832067885263 20000 118 11.915 6538 R Smith 19 82 7987188035689 36772 124 11.795 7043 R Smith 20 82 2173328761571 19656 115 11.632 9653 R Smith 21 58 543298716599 21723 116 11.616 5768 R Smith 22 52 169160174245 20000 115 11.612 8191 R Smith 23 58 810747927647 20000 115 11.612 7248 R Smith 24 60 3454244358239 20000 115 11.612 6100 R Smith 25 60 189018321331 58808 127 11.564 7788 R Smith 26 52 114230062971 20000 114 11.511 9945 R Smith 27 52 1029369515711 20000 114 11.511 8895 R Smith 28 58 736928023853 20000 114 11.511 8642 R Smith 29 58 736928023853 20000 114 11.511 8642 R Smith 30 60 4821660919323 20000 114 11.511 8444 R Smith 31 100 159929185703 20000 114 11.511 8646 R Smith 32 66 3614192791887 15284 110 11.417 8863 R Smith 33 58 98708132615 20000 113 11.410 8756 R Smith 34 60 303323448333 20000 113 11.410 7996 R Smith 35 106 506972504569 20120 113 11.403 8564 R Smith 36 106 408251547745613 10000 105 11.400 8230 R Smith 37 82 5938953888893 19907 112 11.314 9010 R Smith 38 82 7425115793209 19907 112 11.314 9042 R Smith 39 52 42509546845 20000 112 11.309 5748 R Smith 40 52 89843365969 20000 112 11.309 8758 R Smith 41 52 150889892985 20000 112 11.309 9968 R Smith 42 58 782507407593 20000 112 11.309 7734 R Smith 43 60 4484344243755 20000 112 11.309 9481 R Smith 44 100 82206833338609 20000 112 11.309 7531 R Smith 45 58 222325060763 10000 104 11.292 7832 R Smith 46 52 3680068181457 13301 107 11.268 7836 R Smith 47 66 2517038016555 14840 108 11.244 7397 R Smith 48 82 2295909940011 19656 111 11.228 7195 R Smith 49 58 795329018075 23591 113 11.223 9934 R Smith 50 82 6442859915349 19907 111 11.213 9281 R Smith 51 52 1636889512137 20000 111 11.208 7724 R Smith 52 58 635481469401 20000 111 11.208 9208 R Smith 53 58 211956740839 20000 111 11.208 9545 R Smith 54 60 90779697267 20000 111 11.208 7307 R Smith 55 60 2997280737989 20000 111 11.208 8210 R Smith 56 60 4321264026225 20000 111 11.208 9470 R Smith 57 60 4445595365641 20000 111 11.208 9822 R Smith 58 52 688812815683 10000 103 11.183 8559 R Smith 59 82 38367867040615 10000 103 11.183 6920 R Smith 60 106 5858856352434629 10000 103 11.183 9050 R Smith 61 52 1212241451853 20000 110 11.107 8256 R Smith 62 58 52839326407 20000 110 11.107 9218 R Smith 63 58 1633249508195 20000 110 11.107 9807 R Smith 64 58 776579546957 20000 110 11.107 8448 R Smith 65 60 2853368710009 20000 110 11.107 9310 R Smith 66 60 2958974750767 20000 110 11.107 9898 R Smith 67 60 3468108555441 20000 110 11.107 9882 R Smith 68 60 4470681532631 20000 110 11.107 8372 R Smith 69 60 5160537303507 20000 110 11.107 9855 R Smith 70 66 29979474409 28913 114 11.098 5968 R Smith 71 58 469387109359 10000 102 11.075 8147 R Smith 72 58 557419349873 10000 102 11.075 8916 R Smith 73 58 1313295408947 10000 102 11.075 8233 R Smith 74 58 1319596402677 10000 102 11.075 8786 R Smith 75 60 1746492605077 10000 102 11.075 8014 R Smith 76 60 2319747344799 10000 102 11.075 9595 R Smith 77 66 10941694057 10000 102 11.075 8831 R Smith 78 66 3385909902081 10000 102 11.075 8063 R Smith 79 82 61976585459877 10000 102 11.075 8600 R Smith 80 106 101532422035567 10000 102 11.075 9253 R Smith 81 52 3995993454669 13301 105 11.058 9870 R Smith 82 82 701334132961 19656 109 11.026 9968 R Smith 83 100 43468118077543 20000 109 11.006 8452 R Smith 84 58 678487262125 20000 109 11.006 9376 R Smith 85 58 395178526267 20000 109 11.006 9409 R Smith 86 58 182579377155 20000 109 11.006 9520 R Smith 87 60 2916740069451 20000 109 11.006 8981 R Smith 88 106 158227976455 20000 109 11.006 9886 R Smith 89 130 1060872021917 24537 111 10.981 9726 R Smith 90 37 93061801369 26905 112 10.980 7480 R Smith 91 52 276458718213 10000 101 10.966 9684 R Smith 92 58 151403071919 10000 101 10.966 7717 R Smith 93 58 211956740839 10000 101 10.966 9545 R Smith 94 58 950392115281 10000 101 10.966 9073 R Smith 95 60 502968170927 10000 101 10.966 8247 R Smith 96 66 167928198647 10000 101 10.966 9822 R Smith 97 66 1876131394595 10000 101 10.966 8443 R Smith 98 82 272478401987 10000 101 10.966 8515 R Smith 99 82 63404089076241 10000 101 10.966 8159 R Smith 100 106 5071829957884753 10000 101 10.966 8856 R Smith 101 66 2211264287175 14840 105 10.932 8856 R Smith 102 66 2364307317539 14840 105 10.932 9294 R Smith 103 82 3329128302189 19656 108 10.924 9216 R Smith 104 52 1043827764761 20000 108 10.905 8888 R Smith 105 60 3462599603041 20000 108 10.905 8954 R Smith 106 37 4111071389 10000 100 10.857 8813 R Smith 107 58 141016944033 10000 100 10.857 9936 R Smith 108 58 805479768391 10000 100 10.857 8477 R Smith 109 60 2502262772385 10000 100 10.857 9732 R Smith 110 60 2781948761147 10000 100 10.857 9271 R Smith 111 60 2256305169303 10000 100 10.857 9821 R Smith 112 60 2476995416951 10000 100 10.857 9951 R Smith 113 60 2421745267415 10000 100 10.857 9769 R Smith 114 66 6085263665 10000 100 10.857 9492 R Smith 115 66 1416492589021 10000 100 10.857 8013 R Smith 116 66 1533927640019 10000 100 10.857 9972 R Smith 117 66 1842913644031 10000 100 10.857 9937 R Smith 118 66 1970620879533 10000 100 10.857 9500 R Smith 119 82 1019383426867 19656 107 10.823 9527 R Smith 120 52 39954902847 20000 107 10.804 9846 R Smith 121 58 452026989743 20000 107 10.804 9528 R Smith 122 60 5365195396417 20000 107 10.804 9016 R Smith 123 52 68110929705 20000 106 10.703 7339 R Smith 124 58 1513926608167 20000 106 10.703 9879 R Smith 125 58 795329018075 20000 106 10.703 9934 R Smith 126 60 4031837397447 20000 106 10.703 8706 R Smith 127 82 2653731528155 19656 104 10.520 9599 R Smith 128 60 3441114290305 20000 104 10.501 9546 R Smith 129 58 640953612177 20000 102 10.299 9084 R Smith

 Similar Threads Thread Thread Starter Forum Replies Last Post sweety439 sweety439 11 2020-09-23 01:42 sweety439 Conjectures 'R Us 0 2016-12-07 15:01 robert44444uk Conjectures 'R Us 139 2007-12-17 05:17 rogue Conjectures 'R Us 11 2007-12-17 05:08 michaf Conjectures 'R Us 49 2007-12-17 05:03

All times are UTC. The time now is 10:57.

Tue Jan 18 10:57:31 UTC 2022 up 179 days, 5:26, 1 user, load averages: 0.97, 1.07, 1.09

Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔