mersenneforum.org Error message...
 Register FAQ Search Today's Posts Mark Forums Read

2005-03-04, 19:41   #1
Xyzzy

Aug 2002

100001000000112 Posts
Error message...

The attached test file generates an error with the new version of GMP-ECM... I'm using the packaged AMD64 Debian version...

http://debian-amd64.alioth.debian.or...d64/g/gmp-ecm/

This is the code that it is having trouble with:

Code:
# g1=1822795201 divides 185550750^30-25009^30, doesn't work with Dickson
echo 212252637915375215854013140804296246361 | $ECM -power 15 -k 2 -sigma 781683988 1000000 if ($status != 0) then
echo "############### ERROR ###############";
exit 1;
endif
Here is the output so far:

Code:
mv@k8:~/Desktop\$ ./test.ecm ecm
Input number is 137703491 (9 digits)
Using B1=84, B2=1000, polynomial x^1, sigma=6
Step 1 took 0ms
********** Factor found in step 1: 137703491
Found input number N
Input number is 3533000986701102061387017352606588294716061 (43 digits)
Using B1=191, B2=225, polynomial x^1, sigma=1621
Step 1 took 0ms
Step 2 took 0ms
********** Factor found in step 2: 291310394389387
Found probable prime factor of 15 digits: 291310394389387
Probable prime cofactor 12127960604037464813777571703 has 29 digits
Input number is 145152979917007299777325725119 (30 digits)
Using B1=924, B2=117751, polynomial x^1, sigma=711387948
Step 1 took 2ms
Step 2 took 6ms
********** Factor found in step 2: 59124358487827
Found probable prime factor of 14 digits: 59124358487827
Probable prime cofactor 2455045325301797 has 16 digits
Input number is 242668358425701966181147598421249782519178289604307455138484425562807899 (72 digits)
Using B1=24780, B2=85507063, polynomial x^2, sigma=1417477358
Step 1 took 90ms
Step 2 took 765ms
********** Factor found in step 2: 314189411150178070008866231673623
Found probable prime factor of 33 digits: 314189411150178070008866231673623
Probable prime cofactor 772363261821417470288502136863983499613 has 39 digits
Input number is 291310394389387 (15 digits)
Using B1=2000, B2=119805, polynomial x^3, sigma=40
Step 1 took 2ms
Step 2 took 6ms
********** Factor found in step 2: 291310394389387
Found input number N
Input number is 3533000986701102061387017352606588294716061 (43 digits)
Using B1=167, B2=211, polynomial x^1, sigma=3547
Step 1 took 1ms
Step 2 took 0ms
********** Factor found in step 2: 291310394389387
Found probable prime factor of 15 digits: 291310394389387
Probable prime cofactor 12127960604037464813777571703 has 29 digits
Input number is 449590253344339769860648131841615148645295989319968106906219761704350259884936939123964073775456979170209297434164627098624602597663490109944575251386017 (153 digits)
Using B1=172969, B2=20658299, polynomial x^2, sigma=63844855
Step 1 took 1406ms
Step 2 took 547ms
********** Factor found in step 2: 241421225374647262615077397
Found probable prime factor of 27 digits: 241421225374647262615077397
Probable prime cofactor 1862264813902122131423372344559339567503391871088436708374700394762064021217072743463856958990845558484946068708307156081498461 has 127 digits
Input number is 17061648125571273329563156588435816942778260706938821014533 (59 digits)
Using B1=174000, B2=69495900, polynomial x^2, sigma=585928442
Step 1 took 630ms
Step 2 took 620ms
********** Factor found in step 2: 4562371492227327125110177
Found probable prime factor of 25 digits: 4562371492227327125110177
Probable prime cofactor 3739644646350764691998599898592229 has 34 digits
Input number is 89101594496537524661600025466303491594098940711325290746374420963129505171895306244425914080753573576861992127359576789001 (122 digits)
Using B1=325001, B2=1032299, polynomial x^1, sigma=877655087
Step 1 took 2224ms
Step 2 took 46ms
********** Factor found in step 2: 122213491239590733375594767461662771175707001
Found probable prime factor of 45 digits: 122213491239590733375594767461662771175707001
Probable prime cofactor 729065126875888654836271846897328714196046117321552802754910712464291427082001 has 78 digits
Input number is 5394204444759808120647321820789847518754252780933425517607611172590240019087317088600360602042567541009369753816111824690753627535877960715703346991252857 (154 digits)
Using B1=345551, B2=184716334, polynomial Dickson(3), sigma=805816989
Step 1 took 2838ms
********** Factor found in step 1: 25233450176615986500234063824208915571213
Found probable prime factor of 41 digits: 25233450176615986500234063824208915571213
Composite cofactor 213771973590779703877582369062709101178538085915092060190430818668514532785234237012872011811995059836377330127389 has 114 digits
Input number is 242668358425701966181147598421249782519178289604307455138484425562807899 (72 digits)
Using B1=854975, B2=85510503, polynomial x^2, sigma=1417477358
Step 1 took 3173ms
Step 2 took 766ms
********** Factor found in step 2: 314189411150178070008866231673623
Found probable prime factor of 33 digits: 314189411150178070008866231673623
Probable prime cofactor 772363261821417470288502136863983499613 has 39 digits
Input number is 3923385745693995079670229419275984584311007321932374190635656246740175165573932140787529348954892963218868359081838772941945556717 (130 digits)
Using B1=141667, B2=150814537, polynomial Dickson(3), sigma=876329474
Step 1 took 973ms
Step 2 took 1665ms
********** Factor found in step 2: 662926550178509475639682769961460088456141816377
Found probable prime factor of 48 digits: 662926550178509475639682769961460088456141816377
Probable prime cofactor 5918281210244974807753908524217714036623152303854001660136533635338204743433806421 has 82 digits
Input number is 124539923134619429718018353168641490719788526741873602224103589351798060075728544650990190016536810151633233676972068237330360238752628542584228856301923448951 (159 digits)
Using B1=1260317, B2=24289207, polynomial x^2, sigma=1604840403
Step 1 took 11393ms
Step 2 took 581ms
********** Factor found in step 2: 148296291984475077955727317447564721950969097
Found probable prime factor of 45 digits: 148296291984475077955727317447564721950969097
Probable prime cofactor 839804700900123195473468092497901750422530587828620063507554515144683510250490874819119570309824866293030799718783 has 114 digits
Input number is 5735013127104523546495917836490637235369 (40 digits)
Step 1 took 937ms
Step 2 took 5298ms
********** Factor found in step 2: 5735013127104523546495917836490637235369
Found input number N
Input number is 17833653493084084667826559287841287911473 (41 digits)
Step 1 took 1079ms
Step 2 took 5032ms
********** Factor found in step 2: 17833653493084084667826559287841287911473
Found input number N
Input number is 212252637915375215854013140804296246361 (39 digits)
Using B1=1000000, B2=839549779, polynomial x^15, sigma=781683988
Step 1 took 2356ms
Step 2 took 3655ms
############### ERROR ###############
Attached Files
 test.ecm.gz (2.2 KB, 209 views)

 2005-03-04, 19:49 #2 akruppa     "Nancy" Aug 2002 Alexandria 2,467 Posts This was a test for factors found by the Brent-Suyama extension. Which factors that finds depends on a lot of internal parameters, and since most of those changed since 5.0.3, the test doesn't work anymore. In the ecm.test script in the ecm-6.0.tar.gz file, this test is commented out. I'll alert Laurent Fousse to update the test scripts in the Debian packages. Alex
 2005-03-04, 20:17 #3 Xyzzy     Aug 2002 33·313 Posts My mistake... I was using the test script I had saved from the older version... I don't even know where the packaged version puts the new test scripts...

 Similar Threads Thread Thread Starter Forum Replies Last Post marigonzes Information & Answers 0 2017-09-28 19:05 petrw1 PrimeNet 4 2016-08-13 16:48 AurKayne Hardware 3 2005-08-29 09:13 FeLiNe Software 7 2005-06-06 05:18 McBryce NFSNET Discussion 2 2003-07-07 11:35

All times are UTC. The time now is 16:04.

Sat May 21 16:04:03 UTC 2022 up 37 days, 14:05, 0 users, load averages: 1.23, 1.39, 1.38