![]() |
![]() |
#12 |
Just call me Henry
"David"
Sep 2007
Cambridge (GMT/BST)
5×19×61 Posts |
![]()
I realized the first answer could have half its 13s converted to any number. In fact, only 2 need to be 13s.
Using 2^11 was a nice solution. 9 of each using factorials ((666+666+666)/666)!^((13+13+13+13)/13)+666+13+13+13+13+((666+666+666)/666)! Hitting blank trying to use sqrt |
![]() |
![]() |
![]() |
#13 | |
Aug 2020
2·3·19 Posts |
![]() Quote:
In saying "smooth" I was making a pun about the fact that the answer makes good use of the 7-smoothness of 2016. |
|
![]() |
![]() |
![]() |
#14 |
1976 Toyota Corona years forever!
"Wayne"
Nov 2006
Saskatchewan, Canada
13×349 Posts |
![]() |
![]() |
![]() |
![]() |
#15 |
6809 > 6502
"""""""""""""""""""
Aug 2003
101×103 Posts
217748 Posts |
![]()
2020 = 66613 + 66613 - 13*13 - (13+13+13+13+13+13+13)/13
2 ea 666 12 ea 13 total 14 |
![]() |
![]() |
![]() |
#16 |
6809 > 6502
"""""""""""""""""""
Aug 2003
101×103 Posts
22·72·47 Posts |
![]()
2020 = 13#/((666+666+666)/666) - (666 x 13) + 666 + (13+13)/13
6 ea 666 5 ea 13 total 11 |
![]() |
![]() |
![]() |
#17 |
1976 Toyota Corona years forever!
"Wayne"
Nov 2006
Saskatchewan, Canada
13·349 Posts |
![]() |
![]() |
![]() |
![]() |
#18 |
1976 Toyota Corona years forever!
"Wayne"
Nov 2006
Saskatchewan, Canada
13·349 Posts |
![]()
666÷6.66×(13+13)÷1.3+(666+666)÷6.66
Getting a little inventive.. but unc started it ..Nya Nya |
![]() |
![]() |
![]() |
#19 |
6809 > 6502
"""""""""""""""""""
Aug 2003
101×103 Posts
22×72×47 Posts |
![]() |
![]() |
![]() |
![]() |
#20 |
Feb 2017
Nowhere
33×5×31 Posts |
![]()
13*13*13 - 13*13 - ((666+666)/666)^((666+666+666)/666)
666 + 666 + 666 + ((13+13)/13)*(13 - (13+13)/13) I had checked the idea of the stated equation being valid in some base. This led to a cubic equation whose only real root was about -5.09. I concluded that the "little know fact" was an "alternative fact." |
![]() |
![]() |
![]() |
#21 |
Apr 2020
132 Posts |
![]()
Does 2020.000008 with 6 numbers count?
![]() Code:
sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(666!)))))))))*sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(666!)))))))))))))*sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(666!)))))))))))))))))))))))))))))*sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(13)))))))))))))))))))))/sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(666!))))))))))))))))))))))/sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(13)))))))))))))) Last fiddled with by charybdis on 2020-11-26 at 00:03 |
![]() |
![]() |
![]() |
#22 |
Jun 2003
Oxford, UK
2·7·137 Posts |
![]()
Certainly not the smallest, but has some symmetry and uses 5 operators, +,-,^,/,()
((((((13+13)/13)^((13+13)/13)+(13/13))+(((666+666)/666)^((666+666)/666)))*(((13+13)/13)^((13+13)/13)+(13/13)))^((666+666)/666))-(((13+13)/13)^((13+13)/13)+(13/13)) i.e. 2^2+1=5, 2^2=4, 5+4=9, 9*5=45, 45^2 = 2025, 2025-5=2020 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
June 2020 | tgan | Puzzles | 16 | 2020-07-05 22:21 |
May 2020 | tgan | Puzzles | 4 | 2020-06-08 09:49 |
March 2020 | what | Puzzles | 1 | 2020-04-24 05:46 |
February 2020 | what | Puzzles | 20 | 2020-03-04 07:55 |