mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > Conjectures 'R Us

Reply
 
Thread Tools
Old 2009-12-20, 11:10   #67
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

22·32·293 Posts
Default

I'm done with Riesel and Sierp bases 512 and 1024. These got a little tricky, especially on the Sierp side. There was both algebraic factors and unusual GFNs as well as testing from RPS and ProthSearch that helped eliminate some k's that I didn't. I only tested them to n=2500 but with testing from other projects, all of the remaining k's are at n>=145K. 2 are proven, one has 1 k remaining, and another has 2 k's remaining.

Particulars:

Riesel base 512 with a conjecture of k=14 is proven. Although cubed k's would have full algebraic factors, k=1 & 8 were already eliminated with a trivial factor of 7. This was the easy one.

Riesel base 1024 with a conjecture of k=81 has k=29 & 74 remaining. All squared k's have full algebraic factors, which eliminates k=9 & 36. After testing to n=2500, I had k=29, 39, & 74 remaining. For odd k's, base 2 Riesel primes convert to base 1024 Riesel primes if n==(0 mod 10). 39*2^40700-1 is prime, which converts to 39*1024^4070-1 so it is eliminated. For k=29, it has been tested to n=2M base 2 with no n==(0 mod 10) primes so it remains at n=200K base 1024. For k's==(2 mod 4), base 2 Riesel primes convert if n==(1 mod 10) where n>1. For k=74, it has been tested to n=1.45M base 2 with no n==(1 mod 10) n>1 primes so it remains at n=145K base 1024.

Sierp base 512 with a conjecture of k=18 has k=5 remaining and was the most unusual. Since 512=2^9, k=1, 2, 4, 8, & 16 are all GFN's. All cubed k's have full algebraic factors and in this case, it eliminates two of the GFN's, k=1 & 8, so we can't say that "k=1 and 8 are GFn's with no known prime" since it is mathematically impossible for them to have a prime. k=2, 4, & 16 have no known prime so are the only GFN's shown as such. As for k=5 remaining, the base 2 ProthSearch project has searched it to n=5.33M with no n==(0 mod 9) prime, which is the requirement for a base 512 prime. Hence k=5 remains at n=592.2K base 512. (I also updated the search limit for Sierp base 128 k=40.)

Sierp base 1024 with a conjecture of k=81 is proven and was a little unusual on its GFN elimination. Since 1024=2^10, k=1, 2, 4, 8, 16, 32, & 64 are all GFN's. k=2, 8 & 32 were eliminated by a trivial factor of 3. All k's that are perfect 5th powers have full algebraic factors, which eliminates k=1. k=64 has a prime at n=1; the only GFN on either of these bases with a known prime. This leaves only k=4 & 16 as GFN's with no known prime.

Bottom line:
Riesel base 1024 has the following remaining:
29 (200K)
74 (145K)

Sierp base 512 has the following remaining:
5 (592.2K)

I had hoped to open up some more power-of-2 bases testing but this didn't do it. What is remaining is being searched by RPS and ProthSearch. Like Sierp base 128, these aren't worth messing with.

The pages will shortly be updated for these bases.


Gary
gd_barnes is offline   Reply With Quote
Old 2009-12-20, 13:34   #68
rogue
 
rogue's Avatar
 
"Mark"
Apr 2003
Between here and the

22·5·17·19 Posts
Default Sierpinski base 605

Completed to n=20000 and released. k=70 remains. Here are the primes.

Code:
2*605^5+1
4*605^2+1
6*605^1+1
8*605^23+1
10*605^12394+1
12*605^5+1
14*605^3+1
16*605^2+1
18*605^1+1
20*605^1+1
22*605^4+1
24*605^3+1
26*605^1+1
28*605^2+1
30*605^34+1
32*605^13+1
34*605^2+1
36*605^5+1
38*605^3+1
40*605^86+1
42*605^1+1
44*605^11+1
46*605^2068+1
48*605^29+1
50*605^11+1
52*605^6+1
54*605^5+1
56*605^3+1
58*605^6+1
60*605^3+1
62*605^1+1
64*605^10+1
66*605^13+1
68*605^1+1
72*605^10+1
74*605^1+1
76*605^4+1
78*605^16+1
80*605^3+1
82*605^2+1
84*605^1+1
86*605^5+1
88*605^2+1
90*605^2+1
92*605^1+1
94*605^4+1
96*605^12+1
98*605^3+1
rogue is offline   Reply With Quote
Old 2009-12-20, 13:52   #69
Mini-Geek
Account Deleted
 
Mini-Geek's Avatar
 
"Tim Sorbera"
Aug 2006
San Antonio, TX USA

3·1,423 Posts
Default

Quote:
Originally Posted by henryzz View Post
do u mean a .prp file as .npg files are only single k values?
might be worth editing that in in the script thread
By NewPGen I meant the format LLR uses, which in srfile is -G and writes to a .prp file. Although it would work just fine on anything that has "k n", (or even "k n c" or any other number of specifiers - as long as the first two are k and n, separated by spaces) such as .prp, (LLR/NewPGen) .npg, (single-k NewPGen) and ABC files, for single-k files there'd be the useless overhead of specifying and filtering the k.
Besides, I can't edit the other post myself, as it's way past the 1 hour mark, and I'm not a mod here.

Last fiddled with by Mini-Geek on 2009-12-20 at 13:53
Mini-Geek is offline   Reply With Quote
Old 2009-12-20, 22:44   #70
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

1054810 Posts
Default

Karsten reported:

50*601^30735-1 is prime

As far as I know, he has not reserved Riesel base 601.
gd_barnes is offline   Reply With Quote
Old 2009-12-20, 23:41   #71
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

23·1,201 Posts
Default

Quote:
Originally Posted by gd_barnes View Post
Karsten reported:

50*601^30735-1 is prime

As far as I know, he has not reserved Riesel base 601.
Actually,
BR601a.txt:120*601^4663-1 is 3-PRP! (4.1509s+0.0024s)
BR601a.txt:50*601^30735-1 is 3-PRP! (188.4408s+0.0183s)
BR601a.txt:624*601^44279-1 is 3-PRP! (564.9792s+0.0151s)

EDIT: The file is attached - it was running unattended and then interrupted at 45.36K and I will not continue anytime soon.

Overwhelmed by the deluge of new bases, I've stopped short of reporting those that I have reserved, but I'll try to organize and report them all now whereever they are stopped.
Attached Files
File Type: zip pfgw_R601.zip (169.8 KB, 186 views)

Last fiddled with by Batalov on 2009-12-21 at 00:09 Reason: sorry for lack of organization
Batalov is offline   Reply With Quote
Old 2009-12-20, 23:44   #72
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

22·32·293 Posts
Default

Quote:
Originally Posted by Batalov View Post
Actually,
BR601a.txt:120*601^4663-1 is 3-PRP! (4.1509s+0.0024s)
BR601a.txt:50*601^30735-1 is 3-PRP! (188.4408s+0.0183s)
BR601a.txt:624*601^44279-1 is 3-PRP! (564.9792s+0.0151s)
OK, I have Riesel base 601 as unreserved. The status is:

k=300, 482, and 744 still remain and the testing limit on them is n=2500.


Gary

Last fiddled with by gd_barnes on 2009-12-20 at 23:45
gd_barnes is offline   Reply With Quote
Old 2009-12-21, 00:20   #73
kar_bon
 
kar_bon's Avatar
 
Mar 2006
Germany

292510 Posts
Default

Quote:
Originally Posted by gd_barnes View Post
OK, I have Riesel base 601 as unreserved. The status is:

k=300, 482, and 744 still remain and the testing limit on them is n=2500.
you should set the test-limit to 45.36k as Serge's file show.

so i will stop testing k=300!
kar_bon is offline   Reply With Quote
Old 2009-12-21, 02:23   #74
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

22·32·293 Posts
Default

OK, I will set the test limit on Riesel base 601 to n=45.36K on the remaining 3 k's. Since Serge states that he will not get back to it, I'll unreserve it.

Thanks for the results Serge. That helps a lot.


Gary
gd_barnes is offline   Reply With Quote
Old 2009-12-21, 05:21   #75
MyDogBuster
 
MyDogBuster's Avatar
 
May 2008
Wilmington, DE

22×23×31 Posts
Default Sierp Base 729

Sierp Base 729
Conjectured k = 74
Covering Set = 5,73
Trivial Factors k == 1 mod 2(2) and 6 mod 7(7) and 12 mod 13(13)

Found Primes:
2*729^1+1
4*729^1+1
10*729^2+1
14*729^3+1
16*729^2+1
18*729^53+1
22*729^2+1
24*729^1+1
26*729^2+1
28*729^3+1
30*729^1+1
32*729^6+1
36*729^2+1
40*729^3+1
42*729^24+1
44*729^1+1
46*729^2+1
50*729^1+1
52*729^16+1
54*729^1+1
56*729^28+1
58*729^1+1
60*729^3+1
66*729^6+1
68*729^4+1
70*729^1+1
72*729^1+1

Remaining k's:
8*729^n+1 <------- Proven composite by full algebraic factors

Trivial Factor Eliminations: 8k's

Conjecture Proven
MyDogBuster is offline   Reply With Quote
Old 2009-12-21, 12:26   #76
MyDogBuster
 
MyDogBuster's Avatar
 
May 2008
Wilmington, DE

22·23·31 Posts
Default Sierp Bases 869, 899, 914 and 1004

Sierp Bases 869, 899, 914 and 1004 complete n=2.5K-25K

2*899^15731+1 is prime - Conjecture Proven

Bases Released - Results attached

Last fiddled with by MyDogBuster on 2014-09-02 at 09:16
MyDogBuster is offline   Reply With Quote
Old 2009-12-22, 02:41   #77
MyDogBuster
 
MyDogBuster's Avatar
 
May 2008
Wilmington, DE

22×23×31 Posts
Default

Almost caught up on my new reservations so:

Reserving Riesel bases 529,676,784,900
to clean up some k's with full algebraic factors

Last fiddled with by gd_barnes on 2010-01-18 at 14:39 Reason: remove bases <= 500
MyDogBuster is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Bases 101-250 reservations/statuses/primes gd_barnes Conjectures 'R Us 944 2021-11-27 08:57
Riesel base 3 reservations/statuses/primes KEP Conjectures 'R Us 1128 2021-11-24 17:23
Bases 251-500 reservations/statuses/primes gd_barnes Conjectures 'R Us 2355 2021-11-20 18:53
Bases 33-100 reservations/statuses/primes Siemelink Conjectures 'R Us 1711 2021-11-06 21:02
Bases 6-32 reservations/statuses/primes gd_barnes Conjectures 'R Us 1404 2021-11-02 07:06

All times are UTC. The time now is 15:26.


Sat Nov 27 15:26:04 UTC 2021 up 127 days, 9:55, 0 users, load averages: 1.70, 1.41, 1.21

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.