mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > Factoring

Reply
 
Thread Tools
Old 2007-06-17, 20:47   #1
tha
 
tha's Avatar
 
Dec 2002

883 Posts
Default found this factor

[Sun Jun 17 07:24:58 2007]
P-1 found a factor in stage #2, B1=420000, B2=11970000.
UID: Tha/test25, M33604049 has a factor: 136310731051936404841226250672413144328777911

45 digits, but not checked if it is composite.
tha is offline   Reply With Quote
Old 2007-06-17, 21:22   #2
Xyzzy
 
Xyzzy's Avatar
 
Aug 2002

32·5·193 Posts
Default

294119824093630492221527 ร— 463453055134913541793
Xyzzy is offline   Reply With Quote
Old 2007-06-18, 17:18   #3
ewmayer
2ω=0
 
ewmayer's Avatar
 
Sep 2002
Repรบblica de Califo

22×2,939 Posts
Default

463453055134913541793 = 1+2*p*k, with k = 24*3*17*17387*486037,
294119824093630492221527 = 1+2*p*k, with k = 44683*179057*546977,

that's why the composite factor was found in stage 2, but neither of the prime factors popped out after stage 1 - each has a largest factor of k slightly above the stage 1 primes bound.

Apparently Prime95 only does 2 GCDs, one at the end of each stage - a GCD done when stage 2 reached any prime >= 486037 would have revealed the smaller factor, and one done at any p >= 546977 (much smaller than the stage 2 upper bound that was used) would have revealed both.

But stage 2 primes are cheap and GCDs expensive...

Last fiddled with by ewmayer on 2007-06-18 at 17:22
ewmayer is offline   Reply With Quote
Old 2007-06-18, 19:44   #4
xilman
Bamboozled!
 
xilman's Avatar
 
"๐’‰บ๐’ŒŒ๐’‡ท๐’†ท๐’€ญ"
May 2003
Down not across

2·5·1,187 Posts
Default

Quote:
Originally Posted by ewmayer View Post
463453055134913541793 = 1+2*p*k, with k = 24*3*17*17387*486037,
294119824093630492221527 = 1+2*p*k, with k = 44683*179057*546977,

that's why the composite factor was found in stage 2, but neither of the prime factors popped out after stage 1 - each has a largest factor of k slightly above the stage 1 primes bound.

Apparently Prime95 only does 2 GCDs, one at the end of each stage - a GCD done when stage 2 reached any prime >= 486037 would have revealed the smaller factor, and one done at any p >= 546977 (much smaller than the stage 2 upper bound that was used) would have revealed both.

But stage 2 primes are cheap and GCDs expensive...
As is factoring small composite integers.


Paul
xilman is offline   Reply With Quote
Old 2007-06-18, 19:56   #5
ewmayer
2ω=0
 
ewmayer's Avatar
 
Sep 2002
Repรบblica de Califo

22×2,939 Posts
Default

Quote:
Originally Posted by xilman View Post
As is factoring small composite integers.
True, but irrelevant to the argument that 99% of the stage 2 runtime ended up being unnecessary in this instance.
ewmayer is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Factor found that should have been found by P-1 tha Data 65 2020-08-05 21:11
F12 factor found? johnadam74 FermatSearch 16 2016-11-03 12:10
Mfaktc keeps going after a factor is found NBtarheel_33 GPU Computing 11 2012-04-07 21:12
After a factor is found it keeps on going jocelynl Software 6 2004-08-07 01:31
Odd Reporting of a Factor Found Reboot It Data 3 2003-12-03 14:39

All times are UTC. The time now is 18:29.


Fri Sep 22 18:29:36 UTC 2023 up 9 days, 16:11, 1 user, load averages: 1.06, 1.12, 1.14

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

โ‰  ยฑ โˆ“ รท ร— ยท โˆ’ โˆš โ€ฐ โŠ— โŠ• โŠ– โŠ˜ โŠ™ โ‰ค โ‰ฅ โ‰ฆ โ‰ง โ‰จ โ‰ฉ โ‰บ โ‰ป โ‰ผ โ‰ฝ โŠ โА โŠ‘ โŠ’ ยฒ ยณ ยฐ
โˆ  โˆŸ ยฐ โ‰… ~ โ€– โŸ‚ โซ›
โ‰ก โ‰œ โ‰ˆ โˆ โˆž โ‰ช โ‰ซ โŒŠโŒ‹ โŒˆโŒ‰ โˆ˜ โˆ โˆ โˆ‘ โˆง โˆจ โˆฉ โˆช โจ€ โŠ• โŠ— ๐–• ๐–– ๐–— โŠฒ โŠณ
โˆ… โˆ– โˆ โ†ฆ โ†ฃ โˆฉ โˆช โІ โŠ‚ โŠ„ โŠŠ โЇ โŠƒ โŠ… โŠ‹ โŠ– โˆˆ โˆ‰ โˆ‹ โˆŒ โ„• โ„ค โ„š โ„ โ„‚ โ„ต โ„ถ โ„ท โ„ธ ๐“Ÿ
ยฌ โˆจ โˆง โŠ• โ†’ โ† โ‡’ โ‡ โ‡” โˆ€ โˆƒ โˆ„ โˆด โˆต โŠค โŠฅ โŠข โŠจ โซค โŠฃ โ€ฆ โ‹ฏ โ‹ฎ โ‹ฐ โ‹ฑ
โˆซ โˆฌ โˆญ โˆฎ โˆฏ โˆฐ โˆ‡ โˆ† ฮด โˆ‚ โ„ฑ โ„’ โ„“
๐›ข๐›ผ ๐›ฃ๐›ฝ ๐›ค๐›พ ๐›ฅ๐›ฟ ๐›ฆ๐œ€๐œ– ๐›ง๐œ ๐›จ๐œ‚ ๐›ฉ๐œƒ๐œ— ๐›ช๐œ„ ๐›ซ๐œ… ๐›ฌ๐œ† ๐›ญ๐œ‡ ๐›ฎ๐œˆ ๐›ฏ๐œ‰ ๐›ฐ๐œŠ ๐›ฑ๐œ‹ ๐›ฒ๐œŒ ๐›ด๐œŽ๐œ ๐›ต๐œ ๐›ถ๐œ ๐›ท๐œ™๐œ‘ ๐›ธ๐œ’ ๐›น๐œ“ ๐›บ๐œ”