![]() |
![]() |
#265 | |
Dec 2008
you know...around...
32×5×19 Posts |
![]() Quote:
![]() (The number of twins below 68703115 is 316154, which is twice a prime number) A follow-up to my last post, with new results for d <= 40140 and p <= 2^32: Code:
d gap start p end p expected * CSG equivalent 1762 6960 1161678559 1161685519 21.09182930188 1.010477281538 2038 8352 3399730699 3399739051 22.89401673778 1.043151898744 2274 3658 1413479839 1413483497 21.75970227694 1.032767057624 2298 2592 147452491 147455083 19.34694712807 1.028598703340 3118 5862 355526911 355532773 19.96518857500 1.014021164210 3156 2274 44527843 44530117 19.35971567320 1.099253952479 3244 4080 36970783 36974863 17.74018815706 1.018045181811 <--, 3336 2010 36908593 36910603 17.48273441990 1.003369315590 <--- two more close pairs of large gaps between prime pairs 3352 7590 2015459527 2015467117 21.83314802908 1.019092141745 4308 4120 1967146393 1967150513 23.75669768056 1.110133740498 4958 7452 1156278491 1156285943 22.59288528354 1.082632161384 5268 1932 26241749 26243681 17.48192552737 1.023352233093 5956 8316 4135644811 4135653127 22.39367935080 1.011325003037 5988 1170 2111873 2113043 14.56426313296 0.999964651670 <--, 6186 1170 2108627 2109797 14.56724110104 1.000271362864 <--- almost! (a "pair" with the same gap size) 8058 1698 11929993 11931691 16.88654042023 1.036303552135 8706 2484 120816623 120819107 18.93987624421 1.017735007855 9402 3170 531079049 531082219 20.73915457948 1.032290060559 9456 2990 248908601 248911591 21.12516413285 1.092721146265 11166 2280 60171863 60174143 18.76363472517 1.047497114274 11562 2532 145171997 145174529 18.93039860728 1.007285521121 13088 4716 65502293 65507009 19.22288869689 1.068072862061 13228 6870 902281663 902288533 21.33245913439 1.034529351060 13652 7644 1199210237 1199217881 23.09422062982 1.104725625964 15018 2210 60433031 60435241 18.17870410891 1.014595772052 15328 1140 84691 85831 11.50932842677 1.006427165567 15516 1470 5348467 5349937 16.16984617259 1.043626189605 15648 378 13963 14341 10.13729921538 1.021603335340 15896 2406 872561 874967 16.95102545560 1.238243207583 16312 1650 343309 344959 13.35524857321 1.045672756308 16466 4674 62836073 62840747 19.13990801287 1.065921487373 16672 1758 395671 397429 13.92421312300 1.078465754917 16746 684 181943 182627 12.22081026433 1.005233041585 16794 826 292777 293603 13.70313351858 1.086137014502 16998 2806 281482603 281485409 19.57528393577 1.006150797484 17002 1830 249367 251197 15.55518527304 1.248093263741 17088 2650 159132943 159135593 19.62040252199 1.038923897927 17154 960 699539 700499 13.96961383632 1.037016792282 18658 708 6883 7591 10.35180363178 1.089349429976 18774 108 29 137 6.748101033837 1.038018970509 18834 74 5 79 5.851143833900 1.012488514288 19212 482 18587 19069 12.26093058881 1.203390103281 19442 690 6761 7451 10.08467467408 1.061031055151 20184 1456 4112293 4113749 16.57109856838 1.087905236808 20478 1602 9754559 9756161 16.33144543551 1.014729962847 20938 1032 42901 43933 11.52429918604 1.059843498463 21768 1568 3099461 3101029 18.52446245212 1.239053892194 21828 930 333721 334651 15.10433029615 1.184555846849 21842 1884 654257 656141 13.83449510824 1.031725877864 22048 3054 6512419 6515473 16.37721824769 1.043723568068 22416 2088 31927223 31929311 18.46655665218 1.068706475315 22558 6240 351469309 351475549 21.27734655303 1.081293787165 22898 4164 31679309 31683473 18.43002440549 1.067070974545 22922 6468 590298791 590305259 20.93691154140 1.036677620818 23208 3134 599428499 599431633 20.25871504465 1.002335590794 23382 110 17 127 7.074837810889 1.104137585131 23416 480 1117 1597 8.692406656100 1.018003418944 23626 6300 267882487 267888787 22.08735710987 1.138164816631 24162 420 18701 19121 10.55465763290 1.029642319673 24292 852 22159 23011 10.43316257399 1.004763769442 24558 756 235673 236429 12.93914931677 1.041699589642 24744 1470 3680647 3682117 16.97464760025 1.122502422489 25446 108 23 131 6.707750384676 1.028722563228 25812 1590 9674299 9675889 16.22519473489 1.008628228505 25986 580 84247 84827 11.62498811280 1.012790416813 27282 572 75797 76369 11.63922702274 1.021722596222 27338 1380 163781 165161 12.47135016068 1.031787989783 27822 288 2731 3019 9.243367265687 1.019046199773 28092 1030 452077 453107 15.96389492358 1.223022600008 29644 420 367 787 8.495575299546 1.051536487278 29712 360 8167 8527 9.982101327209 1.022884304191 29814 636 96827 97463 12.44452286877 1.071232206603 30098 1608 242873 244481 13.67138122962 1.097072604775 30474 1634 5071169 5072803 18.09430755654 1.171741278585 30676 2484 850273 852757 17.54441544105 1.283194117163 30972 1408 2407549 2408957 17.20406604016 1.170280929502 30978 532 36979 37511 11.99148878100 1.107895111181 31302 3630 1240560649 1240564279 21.86309502754 1.044140532664 31392 84 5 89 6.138468182511 1.021163244521 31442 2040 870059 872099 14.36062809275 1.048587969436 31468 6078 411001081 411007159 20.39923187780 1.028490242412 31588 840 18541 19381 10.39599283298 1.006512367962 31706 8790 3744949433 3744958223 23.88367215439 1.083470312124 31938 670 97651 98321 13.07427977053 1.123916542684 33486 236 311 547 9.884036518720 1.244773443725 33546 1746 12843377 12845123 17.20571050683 1.051069905367 33676 360 181 541 7.816480592812 1.002363934711 34134 2908 357343489 357346397 19.79818902654 1.005277129931 34754 2928 6495569 6498497 15.70478393888 1.000972657281 35016 476 18911 19387 11.69563013172 1.128175764017 35586 136 31 167 7.694281164267 1.126230872317 35634 3320 651206033 651209353 21.28616752192 1.048870753092 35982 3066 468196241 468199307 20.31272956552 1.017445507418 36422 1002 39839 40841 11.09026209108 1.015403498957 36732 938 677021 677959 13.68691926449 1.017423917871 37234 6624 729263629 729270253 20.99993151625 1.029026259344 37342 1638 272971 274609 13.65730842497 1.085301814006 37438 6162 525993679 525999841 20.17614949499 1.004746230335 37668 232 709 941 8.646014361882 1.027128406567 37866 574 40213 40787 12.67812553272 1.159501805293 38596 3492 12915061 12918553 17.19348111838 1.049949493238 38916 1010 1022981 1023991 13.88897046743 1.002280310133 39022 1860 360049 361909 14.87771200938 1.157997311841 39138 252 739 991 9.292135209243 1.098039123274 39176 2196 1538027 1540223 14.25992188223 1.000044563941 39342 3218 415550909 415554127 21.57679427007 1.087256881390 39546 450 18691 19141 10.99353584670 1.057412992489 39648 2246 23749343 23751589 20.56093732056 1.210610096643 39960 700 161977 162677 12.61078705744 1.041619429921 40028 2070 1118219 1120289 14.05263856621 1.007654026079 40134 1508 2275859 2277367 18.56161861346 1.267266342915 * expected average number of prime pairs p+{0,d} in the gap, or "merit" equivalent bonus: record CSG equivalent from a search to d<=80000 / p<=20000: 59544 320 227 547 12.98009662424 1.608743120775 |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Mersenne Primes p which are in a set of twin primes is finite? | carpetpool | Miscellaneous Math | 4 | 2022-07-14 02:29 |
Gaps between maximal prime gaps | Bobby Jacobs | Prime Gap Searches | 52 | 2020-08-22 15:20 |
I found a sieve to search all pairs of twin primes | Pietro Maiorana | Twin Prime Search | 8 | 2019-09-26 23:07 |
find very easy twin prime in the infamy twin primes | hal1se | Miscellaneous Math | 13 | 2018-11-05 16:34 |
Gaps of Primes? | PawnProver44 | Miscellaneous Math | 10 | 2016-04-10 19:32 |