![]() |
![]() |
#23 |
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest
737510 Posts |
![]() |
![]() |
![]() |
![]() |
#24 |
Jul 2022
22·19 Posts |
![]()
I'm just looking into the different ways to derive the sequence used in Lucas-Lehmer primality test in hopes of finding a simplified alternative method.
In these examples, that I have not tested higher values, are used Triangle of coefficients of Chebyshev's OEIS A053122 \({(-1)^{n-k}\left(\begin{matrix} n+k+1 \\ 2 \cdot k+1 \end{matrix}\right)}\) \(\sqrt{(S_3-2)/12}=\sqrt{(37634-2)/12}=56=4 \cdot \sum \limits_{k=0}^{1}{(-1)^{1-k}\left(\begin{matrix} 1+k+1 \\ 2 \cdot k+1 \end{matrix}\right) \cdot (4^2)^k}=4 \cdot(-2+4^2)\) \(\sqrt{(S_4-2)/12}=10864=4 \cdot \sum \limits_{k=0}^{3}{(-1)^{3-k}\left(\begin{matrix} 3+k+1 \\ 2 \cdot k+1 \end{matrix}\right) \cdot (4^2)^k}=4 \cdot(-4+10 \cdot 4^2-6 \cdot 4^4+4^6)\) \(\sqrt{(S_5-2)/12}=408855776=4 \cdot \sum \limits_{k=0}^{7}{(-1)^{7-k}\left(\begin{matrix} 7+k+1 \\ 2 \cdot k+1 \end{matrix}\right) \cdot (4^2)^k}\) Furthermore 4 can be replaced example with S1=14 to obtain the same result with fewer terms \(\sqrt{(S_5-2)/12}=408855776=4 \cdot 14 \cdot\sum \limits_{k=0}^{3}{(-1)^{3-k}\left(\begin{matrix} 3+k+1 \\ 2 \cdot k+1 \end{matrix}\right) \cdot (14^2)^k}=4 \cdot14 \cdot (-4+10 \cdot 14^2-6 \cdot 14^4+14^6)\) Last fiddled with by User140242 on 2023-01-23 at 15:27 |
![]() |
![]() |
![]() |
#25 | |
Jul 2022
22·19 Posts |
![]() Quote:
\(S_{i+1} *S_{i+2}* \dots *S_{i+m} = \sum\limits_{k=0}^{2^m-1}{(-1)^{2^m-1-k}\left(\begin{matrix} 2^m+k \\ 2 \cdot k+1 \end{matrix}\right) \cdot (S_i^2)^k}\) |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Lucas-Lehmer Primality Testing | User140242 | Programming | 20 | 2022-09-10 22:44 |
Modifying the Lucas Lehmer Primality Test into a fast test of nothing | Trilo | Miscellaneous Math | 25 | 2018-03-11 23:20 |
Lucas-Lehmer test | Mathsgirl | Information & Answers | 23 | 2014-12-10 16:25 |
Lucas-Lehmer Test | storm5510 | Math | 22 | 2009-09-24 22:32 |
Lucas-Lehmer primality test | CMOSMIKE | Math | 5 | 2002-09-06 18:46 |