mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > Factoring

Reply
 
Thread Tools
Old 2020-12-12, 02:25   #815
ryanp
 
ryanp's Avatar
 
Jun 2012
Boulder, CO

10A16 Posts
Default

I currently have 1,576 composites left in my local "input.opn" that is {mwrb2100} - {factors found}. I've updated https://cs.stanford.edu/~rpropper/opn.txt with a list of factors found so far. (I also don't seem to have a cert issue).
ryanp is online now   Reply With Quote
Old 2020-12-13, 17:45   #816
RichD
 
RichD's Avatar
 
Sep 2008
Kansas

2×31×53 Posts
Default

Quote:
Originally Posted by ryanp View Post
(I also don't seem to have a cert issue).
Perhaps it is a local cert on my end.
RichD is offline   Reply With Quote
Old 2020-12-13, 23:31   #817
lavalamp
 
lavalamp's Avatar
 
Oct 2007
Manchester, UK

32×149 Posts
Default

I've just submitted a rather large haul of factors to factordb, but I like the look of ryanp's factor reporting format so I processed my factors into the same format and attached them to this post.

I believe many of these factors have already been accounted for in the t2200 file, but at least 130 have not. Unfortunately my script does not currently separate out the two yet.

Here is my progress on the t2200 file:

For the ~13500 composites less than 2^1018 which can be run on GPU, I'm running 1152 curves per candidate @ B1=3e6, B2=14e9. So far 3000 composites have completed stage 1 and 2000 have also completed stage 2. It will be 2-3 more months before this finishes.

For the ~58000 composites larger than 2^1018, all of them have finished 100 curves @ B1=50e3, B2=13.7e6. I'm starting another run of 100 curves now which should take a couple of weeks.
Attached Files
File Type: txt opn_t2200.txt (40.2 KB, 22 views)
lavalamp is offline   Reply With Quote
Old 2020-12-14, 16:30   #818
lavalamp
 
lavalamp's Avatar
 
Oct 2007
Manchester, UK

53D16 Posts
Default

Quote:
Originally Posted by lavalamp View Post
I'm starting another run of 100 curves now which should take a couple of weeks.
Ah ... a minor update to that. As I was plugging in Christmas lights today, the power supply of this machine {censored} exploded.



This will cause a minor delay until I can aquire a replacement and check that the rest of the machine is OK. Progress on the sub 2^1018 composites will be unaffected.

Last fiddled with by VBCurtis on 2020-12-14 at 18:49
lavalamp is offline   Reply With Quote
Old 2020-12-18, 21:58   #819
Pascal Ochem
 
Pascal Ochem's Avatar
 
Apr 2006

97 Posts
Default

The run for \(10^{2200}\) hit this roadblock:
\(11^{18}\) \(6115909044841454629^{16}\) / \(3^4\) / \(5^1\) / \(103^{172}\) / \(227^4\) \(2666986681^{36}\).
It is difficult to circumvent because the abundancy is close to 2.
Without a factor of \(\sigma(6115909044841454629^{16})\), \(\sigma(103^{172})\), or \(\sigma(2666986681^{36})\),
I will have to find a better way to handle roadblocks.
Also, this roadblock prevented the program to produce the file mwrb2200.

http://www.lirmm.fr/~ochem/opn/ropn_comp.txt
These are (probably easier) composites that might simplify the proof in section 6 of this paper.
http://www.lirmm.fr/~ochem/opn/OPNS_Adam_Pace.pdf
Pascal Ochem is offline   Reply With Quote
Old 2020-12-18, 23:08   #820
VBCurtis
 
VBCurtis's Avatar
 
"Curtis"
Feb 2005
Riverside, CA

2×2,339 Posts
Default

Does the first link contain the actual composites you need to factor? I mean, should we throw some ECM firepower at those three large blockers?

Are these three all SNFS difficulty above 320? We can crack some pretty tough numbers these days, but I'm not sure ~330 is within forum firepower.
VBCurtis is offline   Reply With Quote
Old 2020-12-18, 23:18   #821
henryzz
Just call me Henry
 
henryzz's Avatar
 
"David"
Sep 2007
Cambridge (GMT/BST)

2×41×71 Posts
Default

Quote:
Originally Posted by VBCurtis View Post
Does the first link contain the actual composites you need to factor? I mean, should we throw some ECM firepower at those three large blockers?

Are these three all SNFS difficulty above 320? We can crack some pretty tough numbers these days, but I'm not sure ~330 is within forum firepower.
(103^173-1)/102 is 347 digits
(2666986681^37-1)/2666986680 is 340 digits
(6115909044841454629^17-1)/6115909044841454628 is 301 digits


It looks to me like (6115909044841454629^17-1)/6115909044841454628 probably has an octic polynomial at difficulty 301(using the degree halving trick). I am not sure how doable this is.
henryzz is offline   Reply With Quote
Old 2020-12-18, 23:39   #822
VBCurtis
 
VBCurtis's Avatar
 
"Curtis"
Feb 2005
Riverside, CA

2×2,339 Posts
Default

Thanks! I'll start some ECM on the C301 at B1 = 15e7 tonight.
VBCurtis is offline   Reply With Quote
Old 2020-12-18, 23:52   #823
henryzz
Just call me Henry
 
henryzz's Avatar
 
"David"
Sep 2007
Cambridge (GMT/BST)

2×41×71 Posts
Default

Quote:
Originally Posted by VBCurtis View Post
Thanks! I'll start some ECM on the C301 at B1 = 15e7 tonight.
I would suggest checking that I am correct about the octic before going too crazy on it. Maybe checking whether it would be sane to do as well. While it is large I am fairly sure octic is suboptimal. It could be like doing a quartic in reverse.
henryzz is offline   Reply With Quote
Old 2020-12-19, 00:30   #824
charybdis
 
Apr 2020

3018 Posts
Default

Quote:
Originally Posted by henryzz View Post
I would suggest checking that I am correct about the octic before going too crazy on it. Maybe checking whether it would be sane to do as well. While it is large I am fairly sure octic is suboptimal. It could be like doing a quartic in reverse.
x^17-1 does produce a reciprocal octic. NFS@home have done a few of these, but looking at the postprocessing logs, I'd guess they're as difficult as sextics at least 30 digits larger? The octic here will still be faster than the difficulty-339 sextic with an enormous coefficient, but I'm not sure it's sane. Lots of ECM is surely the way to go.
charybdis is online now   Reply With Quote
Old 2020-12-19, 00:37   #825
henryzz
Just call me Henry
 
henryzz's Avatar
 
"David"
Sep 2007
Cambridge (GMT/BST)

2×41×71 Posts
Default

Unless I have made a mistake:

f(x)=x^8+x^7-7x^6-6x^5+15x^4+10x^3-10x^2-4x+1
g(x)=6115909044841454629x-6115909044841454629^2-1


What size have the previous reciprocal octics been?
henryzz is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Passive Pascal Xyzzy GPU Computing 1 2017-05-17 20:22
Tesla P100 — 5.4 DP TeraFLOPS — Pascal Mark Rose GPU Computing 52 2016-07-02 12:11
Nvidia Pascal, a third of DP firejuggler GPU Computing 12 2016-02-23 06:55
Calculating perfect numbers in Pascal Elhueno Homework Help 5 2008-06-12 16:37
Factorization attempt to a c163 - a new Odd Perfect Number roadblock jchein1 Factoring 30 2005-05-30 14:43

All times are UTC. The time now is 21:52.

Sun Mar 7 21:52:56 UTC 2021 up 94 days, 18:04, 0 users, load averages: 3.44, 3.06, 2.73

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.