mersenneforum.org ECM factoring
 Register FAQ Search Today's Posts Mark Forums Read

 2006-10-15, 08:48 #1 michaf     Jan 2005 479 Posts ECM factoring Is there a way I can obtain a list of composites with n=110, which have no small factors, and have been found composite? (For purpose of some ecm
 2006-10-15, 09:20 #2 ltd     Apr 2003 11000001002 Posts If i understand you request correct there is only one pair that suits your request: 151026*5^110-1 is the only one with n=110 where no factor is registered yet. The composite is so small that i would not put to much effort into ECM. After testing for around 20Digits i would switch to msieve. Lars
 2006-10-15, 10:34 #3 michaf     Jan 2005 479 Posts That was indeed what I meant. If that is the only one, can you provide me with a list of the same criteria, but with n=105 to n=115 (assuming there will be around 10 candidates then :> ) Thanks in advance
 2006-10-15, 15:26 #4 Mystwalker     Jul 2004 Potsdam, Germany 3×277 Posts Just entered 151026*5^110-1 into msieve: prp41 factor: 19094485960440215874363137033854288407797 prp42 factor: 609318305575000443064617648157915891177117 So a relatively hard composite for ECM. Lars: If you want, you can provide a list of the smallest composites without factors (maybe up to 100 digits).
 2006-10-15, 16:19 #5 michaf     Jan 2005 47910 Posts Does anyone have a binary for Windows XP available of msieve; I can't seem to connect to the website :(
 2006-10-15, 16:54 #6 Mystwalker     Jul 2004 Potsdam, Germany 3·277 Posts I've uploaded it to http://www.mystwalker.de/msieve.exe
 2006-10-15, 17:31 #7 axn     Jun 2003 2·5·479 Posts A list of numbers with n <= 200 (about 140-ish digits). Knock yourselves out Code: 93254*5^111+1 71098*5^112+1 99784*5^112+1 139394*5^113+1 27676*5^114+1 45652*5^114+1 101284*5^120+1 110846*5^121+1 102482*5^123+1 67748*5^127+1 152588*5^129+1 60394*5^132+1 127312*5^132+1 93254*5^135+1 68492*5^137+1 76724*5^137+1 139606*5^138+1 93484*5^140+1 59912*5^141+1 36412*5^142+1 7528*5^144+1 110242*5^152+1 27676*5^154+1 33448*5^154+1 37328*5^155+1 83936*5^157+1 110846*5^157+1 67612*5^158+1 29914*5^164+1 45748*5^164+1 90056*5^167+1 37292*5^169+1 99926*5^169+1 37714*5^172+1 93484*5^172+1 99926*5^173+1 51208*5^176+1 71098*5^176+1 44348*5^179+1 60722*5^179+1 123748*5^180+1 24032*5^181+1 126134*5^181+1 32122*5^182+1 81556*5^184+1 45748*5^192+1 71098*5^196+1 45652*5^198+1 58642*5^198+1 44348*5^199+1 Code: 177742*5^111-1 244564*5^111-1 270694*5^111-1 284422*5^111-1 285598*5^111-1 49568*5^112-1 304004*5^112-1 189766*5^113-1 175124*5^114-1 211208*5^114-1 335414*5^114-1 22966*5^115-1 53542*5^115-1 326962*5^115-1 268514*5^116-1 183916*5^117-1 145484*5^118-1 181754*5^118-1 182398*5^119-1 193084*5^119-1 162668*5^120-1 171362*5^120-1 280558*5^121-1 297016*5^121-1 330286*5^123-1 66916*5^125-1 119878*5^125-1 287626*5^125-1 95662*5^127-1 159388*5^127-1 270694*5^127-1 284422*5^127-1 70082*5^128-1 289184*5^128-1 266206*5^129-1 170446*5^131-1 178658*5^132-1 248546*5^132-1 268168*5^133-1 331882*5^133-1 263432*5^134-1 52922*5^136-1 119878*5^137-1 136804*5^137-1 171748*5^137-1 105782*5^138-1 326962*5^139-1 250216*5^141-1 145484*5^142-1 45742*5^143-1 48394*5^143-1 57406*5^143-1 84466*5^145-1 156694*5^145-1 105782*5^146-1 326834*5^146-1 341552*5^146-1 49568*5^148-1 151026*5^149-1 227968*5^149-1 282316*5^151-1 151026*5^152-1 265702*5^155-1 82952*5^156-1 58882*5^157-1 151026*5^158-1 326834*5^158-1 177742*5^159-1 325846*5^159-1 23906*5^160-1 318278*5^160-1 1396*5^161-1 4906*5^161-1 254*5^162-1 301562*5^162-1 322498*5^163-1 76322*5^164-1 177742*5^165-1 47126*5^166-1 193084*5^167-1 329584*5^167-1 90082*5^169-1 305716*5^171-1 52922*5^172-1 146756*5^172-1 4906*5^173-1 201778*5^173-1 267298*5^173-1 114986*5^174-1 190334*5^174-1 146756*5^176-1 239342*5^176-1 119098*5^181-1 190468*5^181-1 181754*5^182-1 270694*5^183-1 291364*5^183-1 313126*5^183-1 330286*5^183-1 52922*5^184-1 254*5^186-1 22934*5^186-1 175124*5^186-1 195872*5^186-1 298442*5^186-1 22966*5^187-1 63838*5^187-1 170386*5^187-1 244564*5^187-1 270694*5^187-1 45742*5^191-1 244474*5^191-1 178658*5^192-1 146264*5^194-1 154844*5^194-1 181754*5^194-1 49568*5^196-1 162668*5^196-1 289184*5^196-1 155056*5^197-1 22966*5^199-1 326962*5^199-1 53546*5^200-1 109862*5^200-1 151026*5^200-1
 2006-10-15, 17:33 #8 michaf     Jan 2005 479 Posts Thank you very much; works like a breeze :)
 2006-10-15, 23:02 #9 rogue     "Mark" Apr 2003 Between here and the 5×17×71 Posts Here are a few factors found with ECMNet: Code:  Factor=(114986*5^174-1)/379902756659932314540226757 Method=ECM B1=50000 Sigma=317724188 Factor=(145484*5^118-1)/70720022828927 Method=P+1 B1=11000 Sigma=0 Factor=(146756*5^176-1)/54664922438141 Method=ECM B1=4000 Sigma=3919738122 Factor=(159388*5^127-1)/207744844379353 Method=ECM B1=4000 Sigma=1808995376 Factor=(162668*5^196-1)/433875207094892411 Method=ECM B1=11000 Sigma=2582877610 Factor=(178658*5^132-1)/8982269123892058877 Method=ECM B1=4000 Sigma=762976299 Factor=(178658*5^192-1)/175924146197165790157 Method=ECM B1=4000 Sigma=1578730843 Factor=(22966*5^115-1)/6145137373110220361 Method=ECM B1=11000 Sigma=2502255553 Factor=(244474*5^191-1)/12604574046969647 Method=ECM B1=4000 Sigma=1938855787 Factor=(270694*5^111-1)/9282654955784874686237 Method=ECM B1=50000 Sigma=4266460859 Factor=(284422*5^127-1)/306924591435787012637 Method=ECM B1=11000 Sigma=1582262282 Factor=(32122*5^182+1)/130638651980492717 Method=ECM B1=11000 Sigma=4266957462 Factor=(326962*5^115-1)/1020925597568325778191539 Method=P+1 B1=250000 Sigma=0 Factor=(330286*5^123-1)/158471259457076034563 Method=ECM B1=11000 Sigma=524053560 Factor=(37292*5^169+1)/13842322175522083193 Method=ECM B1=11000 Sigma=1644641442 Factor=(44348*5^199+1)/16955700689371753 Method=ECM B1=4000 Sigma=2698378633 Factor=(45652*5^198+1)/2688181171747004147 Method=ECM B1=11000 Sigma=2562229817 Factor=(4906*5^161-1)/634601858622185420614757 Method=ECM B1=50000 Sigma=4286256100 Factor=(4906*5^173-1)/92427297981294512736881 Method=ECM B1=50000 Sigma=21193133 Factor=(52922*5^184-1)/93301874885777516011 Method=ECM B1=11000 Sigma=933155666 Factor=(53542*5^115-1)/458418141797417 Method=ECM B1=4000 Sigma=3636869478 Factor=(58642*5^198+1)/330921465926153 Method=ECM B1=4000 Sigma=2089995963 Factor=(70082*5^128-1)/7210637297104627 Method=P+1 B1=11000 Sigma=0 Factor=(82952*5^156-1)/102056906295636737 Method=ECM B1=11000 Sigma=3487385275 Factor=(84466*5^145-1)/70564051565150093 Method=ECM B1=11000 Sigma=3035267008 Factor=(93484*5^140+1)/3169025325620488069 Method=ECM B1=11000 Sigma=4229484020 Factor=(110242*5^152+1)/20425567696228201219 Method=ECM B1=11000 Sigma=3704238344 Factor=(110846*5^157+1)/36894600680914771 Method=ECM B1=11000 Sigma=3818262179 Factor=(156694*5^145-1)/327006191082653 Method=ECM B1=4000 Sigma=3577478552 Factor=(162668*5^120-1)/85256087348126738693363423 Method=P-1 B1=1000000 Sigma=0 Factor=(170386*5^187-1)/69698390156631852757 Method=ECM B1=50000 Sigma=2836256888 Factor=(170446*5^131-1)/17248118797340549 Method=P+1 B1=50000 Sigma=0 Factor=(177742*5^111-1)/8195343775507391 Method=ECM B1=4000 Sigma=2218838184 Factor=(177742*5^159-1)/16063038136782011 Method=ECM B1=11000 Sigma=3312015359 Factor=(182398*5^119-1)/47173547661287921 Method=P+1 B1=11000 Sigma=0 Factor=(193084*5^119-1)/3019144474204511 Method=ECM B1=4000 Sigma=45234912 Factor=(193084*5^167-1)/1429649390984524573 Method=ECM B1=11000 Sigma=1425380224 Factor=(22934*5^186-1)/172160876759587631695076377 Method=ECM B1=250000 Sigma=1617428312 Factor=(22966*5^199-1)/29100478681586969 Method=ECM B1=4000 Sigma=1191682622 Factor=(254*5^162-1)/9739118161967427559960039873 Method=ECM B1=50000 Sigma=2879001303 Factor=(266206*5^129-1)/30696985392105649 Method=ECM B1=11000 Sigma=3666464973 Factor=(267298*5^173-1)/34227798584171 Method=ECM B1=4000 Sigma=4107368742 Factor=(268514*5^116-1)/370068380371036213 Method=ECM B1=11000 Sigma=1524499785 Factor=(270694*5^183-1)/1101705109993493 Method=ECM B1=4000 Sigma=2102509712 Factor=(270694*5^187-1)/38463742897711 Method=P-1 B1=11000 Sigma=0 Factor=(280558*5^121-1)/414576995606023390211 Method=ECM B1=11000 Sigma=469015256 Factor=(285598*5^111-1)/375749537040391 Method=ECM B1=4000 Sigma=3157466552 Factor=(291364*5^183-1)/1509357189919666267 Method=ECM B1=11000 Sigma=2244193588 Factor=(318278*5^160-1)/533790183710437 Method=P+1 B1=11000 Sigma=0 Factor=(326834*5^158-1)/17246730850466681 Method=ECM B1=11000 Sigma=3022016363 Factor=(331882*5^133-1)/16984086107920411643 Method=ECM B1=11000 Sigma=1661523515 Factor=(33448*5^154+1)/1583005222600247 Method=ECM B1=11000 Sigma=1692147828 Factor=(335414*5^114-1)/5041036922451253 Method=ECM B1=4000 Sigma=2725960821 Factor=(37328*5^155+1)/4943409161782783229 Method=ECM B1=4000 Sigma=179112494 Factor=(45748*5^164+1)/470297374399093 Method=ECM B1=4000 Sigma=515481127 Factor=(57406*5^143-1)/375175202823019 Method=ECM B1=4000 Sigma=2808855047 Factor=(63838*5^187-1)/512447326408133276035429 Method=ECM B1=50000 Sigma=2993800935 Factor=(67612*5^158+1)/480360427198259852989 Method=ECM B1=11000 Sigma=686894238 Factor=(68492*5^137+1)/3686282618915677861429 Method=ECM B1=50000 Sigma=1382748929 Factor=(71098*5^196+1)/946115591700317747 Method=ECM B1=11000 Sigma=3763056919 Factor=(83936*5^157+1)/2112075140337902743 Method=ECM B1=4000 Sigma=2429035105 Factor=(95662*5^127-1)/531867303082334337347101 Method=ECM B1=50000 Sigma=1838912073
 2006-10-16, 11:22 #10 rogue     "Mark" Apr 2003 Between here and the 5×17×71 Posts And a few more (I'm stopping for now): Factor=(93484*5^172+1)/60782079140483440871979455131 Method=ECM B1=250000 Sigma=28191491 Factor=(29914*5^164+1)/63794339552597 Method=P-1 B1=50000 Sigma=0 Factor=(330286*5^183-1)/4958452917960746500313 Method=P+1 B1=3000000 Sigma=0 Factor=(76322*5^164-1)/5992764482366367690119 Method=ECM B1=11000 Sigma=1390406135 Factor=(105782*5^146-1)/133850862174409490091959 Method=P+1 B1=3000000 Sigma=0 Factor=(145484*5^142-1)/1937540863409699263307 Method=ECM B1=11000 Sigma=635604225 Factor=(244564*5^187-1)/3626922080959283609031329 Method=ECM B1=50000 Sigma=482724853 Factor=(109862*5^200-1)/28537924427147656121963 Method=P+1 B1=11000000 Sigma=0 Factor=(171362*5^120-1)/13205387043574681401291550997 Method=P+1 B1=11000000 Sigma=0 Factor=(326962*5^139-1)/4186471592323524772673 Method=P+1 B1=1000000 Sigma=0
 2006-10-16, 13:10 #11 michaf     Jan 2005 479 Posts Darn :) When I posted I did just miss the list of composites... which ones do you have left rogue? And to what limits ecm'd? oh, and I noticed P+1 factors in it; did you find those with ecmnet too? (as in, do you use an automated process, or do you pick at them by hand? If automatic, where can I grab the process?) yet another thing, can we have a list of the 100 smallest numbers with no factors reported for Riesel & Sierpinski? Cheers, Micha Last fiddled with by michaf on 2006-10-16 at 13:15