![]() |
![]() |
#133 |
Nov 2007
Halifax, Nova Scotia
1110002 Posts |
![]()
These factorizations may be of interest to you:
8269^64 + 1 = 2 * 918268289 * 1044636673 * 27246569091713 * 330833653243776747964260771073 * 561890619505467417673578437249 * 22086806450819711302131630421735078367489 * 105934871592905257020705756143502134929049089 * 2292352902418162653788885412662352475559184256083067753620867701690641009153 460794822529^16 + 1 = 2 * 449 * 1153 * 224916338770049 * 5105921 * 389376737 * 233934808867765849950955026670045288476891302877629398472959953431198372257 * 38146602286961890605993948856974597290093265751212822436540098028242686596033 1136051159041^16 + 1 = 2 * 1889 * 9697 * 182657 * 1029233737591167061546404353 * 4991684400616824504643310216842312333983399021237982836112814552942824158689 * 223907903336764894448936105343784675277998190020105903822837625065223158354273 4219^64 + 1 = 2 * 641 * 1231149359617 * 359087389210482358273 * 47752688172237420031803545474157444702209 * 23905514849892476878667017966491475670464026031612378017268608727472758893569 * 15940971165884654293284337615436265671765632544321819539512208108813863512200961 1951^64 + 1 = 2 * 194823352251896321 * 5494903108627806024727424919107197441 * 202922654588164636965150039799151256762741981380536283306185198707673601 * 8679678916537243713117894814798421549692233950654818824374118595670136020932975203841 844734922753^16 + 1 = 2 * 11791364666078069125878775157281 * 42723450197711698022080547608002464275357153 * 66721653457086290019387247308738749397818644599571774538173279964206603452183917936744929089886575563256181290341377 381053332094977^16 + 1 = 2 * 97 * 8161 * 48193 * 2363393 * 7490371880343553 * 3561057220214818417811213269433920961 * 2205668062227165765587303425983768752328380602786776891201714602024637217 * 18624504053661432461756375938038441455140478620001566417771989642079451879522589698595877537 2437^64 + 1 = 2 * 257 * 50017651735988471295617 * 193033328300995328225784833 * 1653341336520595851600373108168771865756446751677205428506170372737 * 699314651919694529187619943356739714360111937971028210410414814371362999644527262590546130815248769 These are numbers that I helped my friend Karl Dilcher factor, for a recent paper John Cosgrave and he wrote together. John and Karl found all the smaller factors using a combination of Maple's ifactor command and GMP-ECM. (Maple's ifactor is a composite tool analogous to YAFU.) The largest two factors of each were found by me using GNFS via CADO-NFS. I posted these factorizations to factordb.com this morning. The size of the composite co-factors I split using GNFS were 120, 151, 154, 156, 157, 160, 164, and 166 digits, respectively. |
![]() |
![]() |
![]() |
#134 |
Sep 2009
26·37 Posts |
![]()
Some of them look easier to factor with SNFS than with GNFS. Eg 2437^64+1 could be done as SNFS 217, which would certainly be easier than GNFS 166.
Chris |
![]() |
![]() |
![]() |
#135 | |
Nov 2007
Halifax, Nova Scotia
5610 Posts |
![]() Quote:
Code:
3568837085257085726824324669332592915896684118818002242725852271403699379973925779342112031319428799393062121644906533510640858417589809041565976926535365031587312322325198092302028289 I've hit it with ECM up to 60 digits. |
|
![]() |
![]() |
![]() |
#136 |
"Curtis"
Feb 2005
Riverside, CA
7×769 Posts |
![]()
I use 5/9(snfs difficulty) +30 to estimate equivalent GNFS difficulty. The heuristic produces 188 or 189, suggesting GNFS would be more efficient for this task. However, I've only used the conversion for SNFS projects in 200-230 difficulty range, and don't know how well it extends to big-iron tasks.
|
![]() |
![]() |
![]() |
#137 | |
Sep 2008
Kansas
3×1,213 Posts |
![]() Quote:
189 < 222 (remaining composite) which means SNFS would be quicker. Now, which poly would be the best? 13 * (13^51)^5 + 1 (13^43)^6 + 13^2 Edit: Never mind, FDB doesn't have all the factors. Last fiddled with by RichD on 2015-09-10 at 20:47 |
|
![]() |
![]() |
![]() |
#138 | |
"Curtis"
Feb 2005
Riverside, CA
7×769 Posts |
![]() Quote:
I trusted OP's "184 digit cofactor" info. |
|
![]() |
![]() |
![]() |
#139 |
Sep 2008
Kansas
3×1,213 Posts |
![]() |
![]() |
![]() |
![]() |
#141 |
Sep 2009
26·37 Posts |
![]() |
![]() |
![]() |
![]() |
#142 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
232618 Posts |
![]()
Two more for GF'3:
Code:
GF(185,3) has a factor: 1784229339435*2^187+1 = 349993408840477174486123493730674197138441859438238753954983502151681 [TF:227:228:mmff-gfn3 0.28 mfaktc_barrett236_F160_191gs] GF(208,3) has a factor: 4043684821205*2^209+1 = 3326950900831706864163191125935852440699815370218131646884454206899444776961 [TF:250:251:mmff-gfn3 0.28 mfaktc_barrett252_F192_223gs] Last fiddled with by Batalov on 2016-03-06 at 07:29 |
![]() |
![]() |
![]() |
#143 |
Apr 2012
993438: i1090
2·73 Posts |
![]() Code:
463507*2^34186+1 is a Factor of GF(34185,6)!!!! |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Generalized Fermat numbers (in our case primes) | pepi37 | Conjectures 'R Us | 4 | 2015-10-09 14:49 |
Pseudoprimality Hypothesis for Specific Class of Generalized Fermat Numbers | primus | Miscellaneous Math | 1 | 2015-03-25 22:18 |
Generalized Fermat factors - why? | siegert81 | Factoring | 1 | 2011-09-05 23:00 |
Generalized Fermat Numbers | ET_ | Programming | 4 | 2008-06-23 07:59 |
Generalized Fermat Prime Search? | pacionet | Lounge | 3 | 2006-01-25 15:40 |