![]() |
![]() |
#1 |
Cranksta Rap Ayatollah
Jul 2003
641 Posts |
![]()
Could someone give me the details of the proof that there is no polynomial with integer coefficients that generates only primes? I think it was Goldbach who proved it, but I can't find any details of the proof online.
I asked someone about it and he said that you use the fact that f(f(0)) is divisible by f(0), but what if f(f(0)) = f(0)? |
![]() |
![]() |
![]() |
#2 |
∂2ω=0
Sep 2002
Repรบblica de California
5×2,351 Posts |
![]()
Page 38 of Riesel, 2nd edition. It's a one-page proof, but too long for me to want to retype it here. If you're interested in number theory, it's one of the short list of books I consider must-haves.
|
![]() |
![]() |
![]() |
#3 |
Cranksta Rap Ayatollah
Jul 2003
12018 Posts |
![]()
Unfortunately, all my money is going towards studying and taking an actuarial exam and the local library doesn't have a copy, the local college has an older copy though .. hmm .. or I could drive 45 minutes to Davis ..
In the meantime, if anyone could write up the proof or point me to another resource that would have it (the local library does have Hardy and Wright if the proof is in there) I would appreciate it! and thanks for the pointer, ewmayer |
![]() |
![]() |
![]() |
#4 |
Jul 2003
2510 Posts |
![]()
Very short proof by contradiction:
f(x) generates only primes. n-degree of f(x), so n>0 f(x)>1 for integer x (it must be prime). So f(0)>1, f(0) is prime. Then f(k*f(0)) is divisible by f(0) (k and x are integers). If there exists integer k: f(k*f(0))<>f(0) then f(k*f(0)) is not prime else there are more than n solutions of f(x*f(0))=f(0) so f(x*f(0)) is constant(equal to f(0)) and f(x) is that constant too so n=0. It's contradiction with n>0. |
![]() |
![]() |
![]() |
#5 | |
Aug 2002
368 Posts |
![]() Quote:
f(0) = 2 (prime) f(1*2) = 5 (not divisible by 2) |
|
![]() |
![]() |
![]() |
#6 | ||
Bamboozled!
"๐บ๐๐ท๐ท๐ญ"
May 2003
Down not across
5·17·137 Posts |
![]() Quote:
Paul |
||
![]() |
![]() |
![]() |
#7 |
Cranksta Rap Ayatollah
Jul 2003
641 Posts |
![]()
thanks cooler, the reason I wanted to know the proof is because I was wondering if it could be extended to show that there are no semiprime-generating polynomials too, and it looks to me like it does.
|
![]() |
![]() |
![]() |
#8 |
Bemusing Prompter
"Danny"
Dec 2002
California
2×29×43 Posts |
![]()
I've read in a book that f(x) = x2 + x + 41 is a very good prime-generating polynomial.
|
![]() |
![]() |
![]() |
#9 |
Nov 2002
2·37 Posts |
![]()
yes, but it only works in the interval [1;39]
greetz andi314 |
![]() |
![]() |
![]() |
#10 |
Jun 2003
Russia, Novosibirsk
2×107 Posts |
![]()
I was thinking about polynomials that can generate Mersenne primes and I made some interesting investigations. I used La Grange interpolations and at the end of my research i came to the matrixes and Pifagor triangle. All my mathematical researches I'll put on my site next week! It's very interesting, but need some CPU work (to calculate matrix 40*41)! Now I'm approaching only to the 15th Mersenne prime... When i'll calculate 38 Mprime, I'll be able to predict 39th and then 40th! But still need some time to accomplish calculations...
|
![]() |
![]() |
![]() |
#11 | |
Jun 2003
Russia, Novosibirsk
2·107 Posts |
![]() Quote:
Here we go: 1..1: Y=X+1 1..2: Y=X+1 1..3: Y=[1*X^2+-1*X^1+4]/6 1..4: Y=[-1*X^3+9*X^2+-14*X^1+18]/24 1..5: Y=[5*X^4+-54*X^3+211*X^2+-306*X^1+192]/120 1..6: Y=[-15*X^5+250*X^4+-1545*X^3+4430*X^2+-5640*X^1+2760]/720 1..7: Y=[31*X^6+-741*X^5+6925*X^4+-32055*X^3+76924*X^2+-88524*X^1+38880]/5040 1..8: Y=[-41*X^7+1365*X^6+-18389*X^5+128835*X^4+-501914*X^3+1076880*X^2+-1155456*X^1+478800]/40320 1..9: Y=[29*X^8+-1372*X^7+26754*X^6+-278656*X^5+1681701*X^4+-5966548*X^3+12040636*X^2+-12421584*X^1+4999680]/362880 1..10: Y=[-3*X^9+396*X^8+-14958*X^7+269136*X^6+-2697723*X^5+15943284*X^4+-55869972*X^3+111883824*X^2+-114873984*X^1+46085760]/3628800 1..11: Y=[35*X^10+-1955*X^9+50160*X^8+-784830*X^7+8213415*X^6+-58549155*X^5+279025390*X^4+-853032220*X^3+1565213400*X^2+-1520742240*X^1+587865600]/39916800 1..12: Y=[-293*X^11+19723*X^10+-585530*X^9+10124070*X^8+-113358069*X^7+863152059*X^6+-4552524460*X^5+16546028180*X^4+-40223970688*X^3+61436314368*X^2+-52047509760*X^1+18162144000]/479001600 1..13: Y=[1405*X^12+-113106*X^11+4054061*X^10+-85383210*X^9+1174484355*X^8+-11092217598*X^7+73569099263*X^6+-344158854270*X^5+1121927942740*X^4+-2469378565896*X^3+3451076942976*X^2+-2713022363520*X^1+890942976000]/6227020800 1..14: Y=[-6909*X^13+646984*X^12+-27247857*X^11+682050512*X^10+-11297115687*X^9+130438929192*X^8+-1077165820731*X^7+6421024534496*X^6+-27523309797984*X^5+83382838505824*X^4+-172449641496912*X^3+228620718398592*X^2+-172086552933120*X^1+54604745395200]/87178291200 1..15: Y=[33587*X^14+-3623361*X^13+177160711*X^12+-5195326773*X^11+101904459657*X^10+-1411367000043*X^9+14199985921693*X^8+-105142309431159*X^7+573860272665680*X^6+-2288478836539896*X^5+6531929309055696*X^4+-12859491270011568*X^3+16372060426094976*X^2+-11929972438944000*X^1+3692523702067200]/1307674368000 1..16: Y=[-144959*X^15+17898885*X^14+-1008180635*X^13+34316456265*X^12+-788174207093*X^11+12916325597175*X^10+-155706335375305*X^9+1402769336077395*X^8+-9496408550340712*X^7+48153184706947320*X^6+-180688241518308160*X^5+490355895400665840*X^4+-925949409280796736*X^3+1139371662003621120*X^2+-807950316133094400*X^1+244947024241920000]/20922789888000 1..17: Y=[541393*X^16+-75948792*X^15+4888222660*X^14+-191368976400*X^13+5093528052886*X^12+-97583735331264*X^11+1389621925122860*X^10+-14974286303262000*X^9+123118058032189649*X^8+-772866863398525896*X^7+3680180344614355400*X^6+-13102532239001150400*X^5+34030713163321773072*X^4+-61958474245665042048*X^3+73989227001160846080*X^2+-51222250406047795200*X^1+15246604373704704000]/355687428096000 1..18: Y=[-1767335*X^17+279605936*X^16+-20399555484*X^15+910530685520*X^14+-27813188347770*X^13+616173334121072*X^12+-10236193954245428*X^11+130021900892231920*X^10+-1275949761165134055*X^9+9706872270331913248*X^8+-57095619387402660792*X^7+257373692142097148800*X^6+-874912018497669603440*X^5+2185559672871473823744*X^4+-3851540267468645719296*X^3+4477198615490422517760*X^2+-3032945776329102950400*X^1+887811115087024128000]/6402373705728000 1..19: Y=[5120313*X^18+-907385553*X^17+74495073006*X^16+-3760914973860*X^15+130694508335646*X^14+-3315730598145126*X^13+63558646138185432*X^12+-939808480784525820*X^11+10848170027271900609*X^10+-98290757620475165889*X^9+699134590170032720418*X^8+-3884454787980457880280*X^7+16681463194311358903392*X^6+-54414601232457051468432*X^5+131253339562948557738144*X^4+-224582035886463490007040*X^3+254742938833322798231040*X^2+-169170206830816762368000*X^1+48762757387863687168000]/121645100408832000 1..20: Y=[-13327575*X^19+2629525197*X^18+-241343499132*X^17+13684105553364*X^16+-536815601089290*X^15+15463479376269774*X^14+-338785506288604644*X^13+5769010297911165708*X^12+-77367005635908071655*X^11+822924034480328029821*X^10+-6957619233648694679016*X^9+46653922566131054379192*X^8+-246445209477880219457520*X^7+1013458909823556283418448*X^6+-3185344344252084176222208*X^5+7443472058898599659124736*X^4+-12398426439979890991656960*X^3+13751062164684629092085760*X^2+-8965950791383605583872000*X^1+2547726589450649198592000]/2432902008176640000 1..21: Y=[31407173*X^20+-6862057830*X^19+700049375335*X^18+-44300975367690*X^17+1948562136823938*X^16+-63257925040107660*X^15+1570951368825297470*X^14+-30523024904598511380*X^13+470604032230074582073*X^12+-5805687408280341761790*X^11+57524458969205569849755*X^10+-457693351166968737211170*X^9+2912698071255669064272848*X^8+-14707013781047667140211120*X^7+58166574519871365790480240*X^6+-176772066401678787790889760*X^5+401314387633230451905283968*X^4+-652208093087160336195801600*X^3+708558313926723552211507200*X^2+-454224369078254042634240000*X^1+127365106051864131010560000]/51090942171709440000 1..22: Y=[-67229827*X^21+16189640670*X^20+-1826529635105*X^19+128303645502690*X^18+-6290003035930782*X^17+228636755358073020*X^16+-6390127837515049810*X^15+140538769268367896580*X^14+-2468869195378814879567*X^13+34966200347082759515670*X^12+-401247524321035075266765*X^11+3735891107350327596458970*X^10+-28168277339761065211899712*X^9+171086128920596232437671920*X^8+-829519058849505998871647120*X^7+3167101250172233095472422560*X^6+-9335140096828617626434250112*X^5+20640907285432846835350878720*X^4+-32795914434765501094151731200*X^3+34956695758636036756327219200*X^2+-22059918159041915161067520000*X^1+6109502430560176696688640000]/1124000727777607680000 1..23: Y=[130657103*X^22+-34535303253*X^21+4289865494761*X^20+-332896719679755*X^19+18096054704693658*X^18+-732353423782424598*X^17+22893102536393368466*X^16+-566014243103568259110*X^15+11242558731734530421683*X^14+-181215893812157617002513*X^13+2384576162272285507223061*X^12+-25683081974632444954807215*X^11+226334555237600603931472148*X^10+-1626728801029266173351659668*X^9+9475469442145828219243927936*X^8+-44292251533282727054033904720*X^7+163789612331057313993590899008*X^6+-469520897969048484546926059968*X^5+1013406808612946536415328235776*X^4+-1577142308879005699309737139200*X^3+1651785858527988697947075686400*X^2+-1027346157349662912446361600000*X^1+281267732333637735066501120000]/25852016738884976640000 1..24: Y=[-230021511*X^23+66491050405*X^22+-9058064779005*X^21+773268473324039*X^20+-46397737848523446*X^19+2080338890265633690*X^18+-72342900848651808210*X^17+1998814818737847235774*X^16+-44593958174574547635171*X^15+812021196174479362742825*X^14+-12150127511440110647233065*X^13+149926187737846135112789019*X^12+-1526986776559737513618532176*X^11+12815200005930130439227528360*X^10+-88245940665553939586863077720*X^9+495054042367889043654902963984*X^8+-2238920049533089927092142735296*X^7+8042979508444440192956714603520*X^6+-22479365454702116078954409552000*X^5+47461836841198455064336180637184*X^4+-72474115022931707440505327462400*X^3+74688672171358406452139902771200*X^2+-45835000598827313999814205440000*X^1+12415677796349282688462028800000]/620448401733239439360000 1..25: Y=[368398881*X^24+-116040180564*X^23+17271157596270*X^22+-1615467308091120*X^21+106535962488833031*X^20+-5267921866577805204*X^19+202779965567668266360*X^18+-6227463261018890777040*X^17+155133883010566096334511*X^16+-3170344618208576776868604*X^15+53545847411076010587625350*X^14+-750701771222152571963008560*X^13+8752477061608715144212354521*X^12+-84823546451385307694422325724*X^11+681469596869086566507601541940*X^10+-4515581077690094800968388715280*X^9+24487426317554152160094940102896*X^8+-107484179920952792793406072375104*X^7+376092656966656356628785698105280*X^6+-1027159561014554378784714995808000*X^5+2125473324570567683518791153116160*X^4+-3189603578664827645127632750284800*X^3+3238676234998930256448656174284800*X^2+-1963120203314248305691225128960000*X^1+526548764029146654488380047360000]/15511210043330985984000000 1..26: Y=[-559293143*X^25+190980243500*X^24+-30893626321250*X^23+3149244498458000*X^22+-227014691974338785*X^21+12309586555410197900*X^20+-521430050528630441000*X^19+17689354843792540634000*X^18+-488839220367304829481305*X^17+11133919052155677147368900*X^16+-210671010101897125142770250*X^15+3328260429319561902050570000*X^14+-44017362831063749605007565695*X^13+487577203150989451469802440900*X^12+-4516722829171021244343815439500*X^11+34868131946859050940040138946000*X^10+-223030063188573858519158096453840*X^9+1172244643563564939988794230302400*X^8+-5005071328832774864388265208040000*X^7+17090621838943299868820073643872000*X^6+-45685103660791319979142482129887232*X^5+92776256607634944289404401529446400*X^4+-136977887190015152068621488703488000*X^3+137164776829429754021545504235520000*X^2+-82182638260527428980249595412480000*X^1+21839032517596419702489808896000000]/403291461126605635584000000 |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Error generating or reading NFS polynomials | Brownfox | Msieve | 7 | 2018-04-06 16:24 |
Prime numbers norms of modulo cyclotomic polynomials | carpetpool | carpetpool | 24 | 2017-10-29 23:47 |
prime generators for quadric irreducible polynomials | bhelmes | Computer Science & Computational Number Theory | 122 | 2017-08-25 21:09 |
Prime generating polynomials that stop? | Orgasmic Troll | Math | 61 | 2017-04-05 19:28 |
Prime generating series | Citrix | Open Projects | 18 | 2013-08-24 05:24 |