mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > Dobri

Reply
 
Thread Tools
Old 2022-10-09, 05:39   #1
Dobri
 
"ม้าไฟ"
May 2018

22×5×23 Posts
Default Exponents of Known Mersenne Primes (Numerical Observations)

The first post of this thread shows the Hamming distances between the consecutive exponents of known Mersenne primes:

{1,2,1,2,3,1,2,2,3,3,2,6,4,4,5,4,5,5,6,8,4,5,7,5,7,11,11,10,11,10,8,9,9,9,8,11,12,11,11,12,13,11,13,17,11,13,11,14,12,13}.

Below is the Wolfram code used to plot a linear fit for said Hamming distances in the attached PDF file.
Code:
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[0, nMp - 1];base = 2; intlen = 27; 
ic = 1; While[ic < nMp, ic++; hda[[ic - 1]] = HammingDistance[IntegerDigits[MpData[[ic - 1]], base, intlen], IntegerDigits[MpData[[ic]], base, intlen]];];
Print[hda];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]
Attached Files
File Type: pdf Hamming.pdf (7.6 KB, 44 views)
Dobri is offline   Reply With Quote
Old 2022-10-09, 18:57   #2
Dobri
 
"ม้าไฟ"
May 2018

22·5·23 Posts
Default

After dividing the Hamming distance by the average number of bits of the pairs of consecutive exponents, the linear fit gives a nearly horizontal line as shown in the attached image.
Code:
ClearAll;
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[1, nMp - 1]; base = 2; intlen = 27;
ic = 1; While[ic < nMp, ic++; hda[[ic - 1]] = HammingDistance[IntegerDigits[MpData[[ic - 1]], base, intlen], IntegerDigits[MpData[[ic]], base, intlen]]/((Length[IntegerDigits[MpData[[ic - 1]], base]] + Length[IntegerDigits[MpData[[ic]], base]])/2);];
hdafit = LinearModelFit[hda, x, x];
Export["Hamming.jpg", Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	Hamming.jpg
Views:	108
Size:	26.9 KB
ID:	27427  
Dobri is offline   Reply With Quote
Old 2022-10-10, 05:36   #3
Dobri
 
"ม้าไฟ"
May 2018

1CC16 Posts
Default

Let's put the meaning of the graph in post #2 at https://www.mersenneforum.org/showpo...10&postcount=2 into words:

The current estimate of the average base-2 Hamming distance per bit (HAMD/bit) between consecutive exponents of Mersenne primes is bounded in the interval (0.45, 0.5) with a tendency toward 0.5.

Last fiddled with by Dobri on 2022-10-10 at 05:38
Dobri is offline   Reply With Quote
Old 2022-10-10, 08:47   #4
Dobri
 
"ม้าไฟ"
May 2018

7148 Posts
Default

In the attached image, a base-2 HAMD/bit graph for all consecutive primes ≤ 1000003 is shown for a partial comparison with the graph in the previous post #2 at https://mersenneforum.org/showpost.p...10&postcount=2.
The average base-2 HAMD/bit value for all consecutive primes is less than 0.2 and has a downward tendency with the increase of the number of primes included in the computation.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "HammingPerBitAllPrimes.jpg";
pmax = 1000003; np = PrimePi[pmax]; hda = ConstantArray[0, np-1]; base = 2; intlen = Length[IntegerDigits[pmax, base]];
p1 = 1; p2 = 2; ic = 0; While[p2 < pmax, p1 = p2; p2 = NextPrime[p2]; ic++; hda[[ic]] = HammingDistance[IntegerDigits[p1, base, intlen], IntegerDigits[p2, base, intlen]]/((Length[IntegerDigits[p1, base]] + Length[IntegerDigits[p2, base]])/2);];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, np}], Frame -> True]
Export[fname, Show[BarChart[hda], Plot[hdafit[x], {x, 1, np}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	HammingPerBitAllPrimes.jpg
Views:	71
Size:	11.7 KB
ID:	27428  

Last fiddled with by Dobri on 2022-10-10 at 09:18
Dobri is offline   Reply With Quote
Old 2022-10-11, 05:39   #5
Dobri
 
"ม้าไฟ"
May 2018

22×5×23 Posts
Default

The dimensionless HAMD/bit term is also called normalized Hamming distance (NHD) which in general describes to what extent two strings are dissimilar.

The tendency for the exponents of Mersenne primes is NHD → 0.5 which corresponds to maximum entropy.
Dobri is offline   Reply With Quote
Old 2022-10-11, 06:25   #6
Dobri
 
"ม้าไฟ"
May 2018

22×5×23 Posts
Default

Obviously, the tendency NHD → 0.5 becomes even more prominent when dividing by the bit length of the larger exponent of a pair of two consecutive exponents (zero padding applies without saying to the smaller exponent in this post and the previous posts) as shown in the attached image.
Code:
SetDirectory[NotebookDirectory[]];
fname = NotebookDirectory[] <> "NHD.jpg";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[1, nMp - 1]; base = 2; intlen = 27;
ic = 1; While[ic < nMp, ic++; hda[[ic - 1]] = HammingDistance[IntegerDigits[MpData[[ic - 1]], base, intlen], IntegerDigits[MpData[[ic]], base, intlen]]/Length[IntegerDigits[MpData[[ic]], base]];];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]
Export[fname, Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	NHD.jpg
Views:	70
Size:	18.8 KB
ID:	27432  
Dobri is offline   Reply With Quote
Old 2022-10-11, 08:36   #7
Dobri
 
"ม้าไฟ"
May 2018

7148 Posts
Default

The attached image shows the normalized Levenshtein distance (NLD) (it is obtained as "the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other", see https://en.wikipedia.org/wiki/Levenshtein_distance) between the consecutive exponents of known Mersenne primes.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "NLD.jpg";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[0, nMp - 1]; base = 2; intlen = Length[IntegerDigits[MpData[[nMp]], base]];
ic = 1; While[ic < nMp, ic++; hda[[ic - 1]] = EditDistance[IntegerDigits[MpData[[ic - 1]], base, intlen], IntegerDigits[MpData[[ic]], base, intlen]]/Length[IntegerDigits[MpData[[ic]], base]];];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]
Export[fname, Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	NLD.jpg
Views:	60
Size:	18.0 KB
ID:	27433  
Dobri is offline   Reply With Quote
Old 2022-10-11, 10:14   #8
Dobri
 
"ม้าไฟ"
May 2018

22·5·23 Posts
Default

The attached image shows the lengths (non-normalized) of the longest common contiguous subsequences (LCS) between the consecutive exponents of known Mersenne primes.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "LCS.jpg";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[0, nMp - 1]; base = 2;
ic = 1; While[ic < nMp, ic++; intlen1 = Length[IntegerDigits[MpData[[ic - 1]], base]]; intlen2 = Length[IntegerDigits[MpData[[ic]], base]]; hda[[ic - 1]] = Length[LongestCommonSubsequence[IntegerDigits[MpData[[ic - 1]], base, intlen1], IntegerDigits[MpData[[ic]], base, intlen2]]];];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]
Export[fname, Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	LCS.jpg
Views:	68
Size:	15.9 KB
ID:	27434  
Dobri is offline   Reply With Quote
Old 2022-10-11, 11:08   #9
Dobri
 
"ม้าไฟ"
May 2018

22·5·23 Posts
Default

The attached 2 images show the base-2 Smith-Waterman similarity (SWS.jpg, see https://en.wikipedia.org/wiki/Smith%...rman_algorithm, Wolfram function SmithWatermanSimilarity) and the base-2 Needleman-Wunsch similarity (NWS.jpg, see https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm, Wolfram function NeedlemanWunschSimilarity) between the consecutive exponents of known Mersenne primes.
Attached Thumbnails
Click image for larger version

Name:	SWS.jpg
Views:	60
Size:	15.4 KB
ID:	27435   Click image for larger version

Name:	NWS.jpg
Views:	56
Size:	14.1 KB
ID:	27436  
Dobri is offline   Reply With Quote
Old 2022-10-11, 14:28   #10
Dobri
 
"ม้าไฟ"
May 2018

46010 Posts
Default

The attached 3D image shows the lengths (non-normalized) of the longest common contiguous subsequences (LCS) between all pairs (i, j), i < j, for i, j = 1, 2,..., 51, of the exponents of known Mersenne primes.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "CLS3D.jpg";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[0, {nMp, nMp}]; base = 2;
ic = 0; While[ic < nMp, ic++; jc = 0; While[jc < nMp, jc++; If[ic < jc,
   intlen1 = Length[IntegerDigits[MpData[[ic]], base]]; intlen2 = Length[IntegerDigits[MpData[[jc]], base]];
   hda[[ic, jc]] = Length[LongestCommonSubsequence[IntegerDigits[MpData[[ic]], base, intlen1], IntegerDigits[MpData[[jc]], base, intlen2]]];
];];];
Show[ListPlot3D[hda, InterpolationOrder -> 0, Filling -> Bottom], Frame -> True]
Export[fname, Show[ListPlot3D[hda, InterpolationOrder -> 0, Filling -> Bottom], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	CLS3D.jpg
Views:	80
Size:	23.9 KB
ID:	27437  
Dobri is offline   Reply With Quote
Old 2022-10-11, 15:31   #11
Dobri
 
"ม้าไฟ"
May 2018

7148 Posts
Default

Here is an example of a 15-bit largest common subsequence:

Mersenne exponent #29 = 110503 = 110101111101001112, and
Mersenne exponent #39 = 13466917 = 1100110101111101001001012.
Dobri is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Mersenne prime exponents that are also Sophie Germain primes carpetpool Miscellaneous Math 5 2022-10-19 01:44
Additive Properties of the Exponents of Known Mersenne Primes Dobri Dobri 3 2021-10-05 06:56
Observations of Wieferich primes and Wieferich-1 friendly club hansl Math 3 2020-09-02 10:40
Sophie-Germain primes as Mersenne exponents ProximaCentauri Miscellaneous Math 15 2014-12-25 14:26
Assorted formulas for exponents of Mersenne primes Lee Yiyuan Miscellaneous Math 60 2011-03-01 12:22

All times are UTC. The time now is 03:25.


Tue Jan 31 03:25:41 UTC 2023 up 166 days, 54 mins, 0 users, load averages: 0.61, 0.82, 0.88

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔