mersenneforum.org  

Go Back   mersenneforum.org > Great Internet Mersenne Prime Search > Math

Reply
 
Thread Tools
Old 2007-10-11, 16:42   #1
Damian
 
Damian's Avatar
 
May 2005
Argentina

2×3×31 Posts
Default Curvature

Reading Gauss biography I found this definition of "gaussian curvature"
In each point of a surface "S" exists a normal vector. Imagine that all normals are traced. Now in the center of a sphere (that can be anywhere with reference to the surface), with unit radio, imagine that all the radios parallel to the normals of the surface "S" are traced. The extremes of these radios make a curve "C" over the sphere of unit radio.
The area of the spheric surface inside "C" is defined as the gaussian curvature.

Now my question is the following: What does the length of the curve C over the unit sphere mean, in relation with the curvature of the surface S?
Maybe it has something to do with the "mean" curvature?
Attached Thumbnails
Click image for larger version

Name:	img005.JPG
Views:	84
Size:	48.1 KB
ID:	1970  
Damian is offline   Reply With Quote
Reply

Thread Tools


All times are UTC. The time now is 06:09.


Wed Jan 26 06:09:00 UTC 2022 up 187 days, 37 mins, 0 users, load averages: 0.80, 1.28, 1.32

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔