mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > FactorDB

Reply
 
Thread Tools
Old 2022-05-16, 21:54   #441
sweety439
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

3×1,151 Posts
Default

The generalized repunit probable prime, R2731(685), N-1 has 31.345% factored, all algebraic factors are already entered.

Factoring this 167 digit number (a factor of Phi(390,685), i.e. a factor of 685,195+) will enable N-1 proof for R2731(685), since this will make N-1 have >33.333% factored.
sweety439 is offline   Reply With Quote
Old 2022-06-17, 16:46   #442
MDaniello
 
MDaniello's Avatar
 
May 2019
Rome, Italy

41 Posts
Default

Code:
2684720974...01   N+/-1  350 digits
5548042917...01   N+/-1   497 digits
(86^294+2)/6          N-1   598 digits
(19607^353+1)/19608   N-1   1511 digits
4687274111...01      N-1   1381 digits
(13088^373-1)/13087   N-1   1532 digits
(17200^457+1)/17201   N-1   1932 digits
(5183^521+1)/5184      N-1   1932 digits
(17195^457-1)/17194   N-1   1932 digits
In addition to these, several Carol-Kynea primes that lacked any kind of primality proof.
Some other primes of this kind were missing from the db at all.
MDaniello is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Can two Mersenne numbers share a factor? James Heinrich Math 57 2011-09-12 14:16
Avoidance of self- & other-deception in proofs cheesehead Soap Box 71 2010-01-14 09:04
Curious and want to share about Prime number 23 spkarra PrimeNet 4 2009-11-20 03:54
Status of GIMPS proofs Brian-E Information & Answers 7 2007-08-02 23:15
Collection of Proofs? Orgasmic Troll Math 1 2004-12-30 15:10

All times are UTC. The time now is 14:25.


Thu Jun 30 14:25:32 UTC 2022 up 77 days, 12:26, 1 user, load averages: 1.72, 1.73, 1.70

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔