![]() |
![]() |
#34 |
Aug 2002
Buenos Aires, Argentina
22×3×112 Posts |
![]()
I should add TEX output to my calculators when requested by user. That would be an interesting addition to the programs.
|
![]() |
![]() |
![]() |
#35 |
Aug 2002
Buenos Aires, Argentina
22·3·112 Posts |
![]()
I've just added TeX output to my polynomial factorization calculator located at https://www.alpertron.com.ar/POLFACT.HTM
For example, the roots of x17 + 1 are: [math]\begin{array}{l} \bullet\,\,x_{1} = -1\\ \bullet\,\,x_{2} = \cos{\frac{\pi }{17}} + i \sin{\frac{\pi }{17}} = \frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\ \bullet\,\,x_{3} = \cos{ \frac{3\pi }{17}} + i \sin{\frac{3\pi }{17}} = \frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\ \bullet\,\,x_{4} = \cos{ \frac{5\pi }{17}} + i \sin{\frac{5\pi }{17}} = \frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\ \bullet\,\,x_{5} = \cos{ \frac{7\pi }{17}} + i \sin{\frac{7\pi }{17}} = \frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\ \bullet\,\,x_{6} = \cos{ \frac{9\pi }{17}} + i \sin{\frac{9\pi }{17}} = -\frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\ \bullet\,\,x_{7} = \cos{ \frac{11\pi }{17}} + i \sin{\frac{11\pi }{17}} = -\frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\ \bullet\,\,x_{8} = \cos{ \frac{13\pi }{17}} + i \sin{\frac{13\pi }{17}} = -\frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\ \bullet\,\,x_{9} = \cos{ \frac{15\pi }{17}} + i \sin{\frac{15\pi }{17}} = -\frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right) + \frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\ \bullet\,\,x_{10} = \cos{ \frac{19\pi }{17}} + i \sin{\frac{19\pi }{17}} = -\frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\ \bullet\,\,x_{11} = \cos{ \frac{21\pi }{17}} + i \sin{\frac{21\pi }{17}} = -\frac{1}{16}\left(-1+\sqrt{17}-\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\ \bullet\,\,x_{12} = \cos{ \frac{23\pi }{17}} + i \sin{\frac{23\pi }{17}} = -\frac{1}{16}\left(-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\ \bullet\,\,x_{13} = \cos{ \frac{25\pi }{17}} + i \sin{\frac{25\pi }{17}} = -\frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}+2\sqrt{34-2\sqrt{17}}+4\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}}\\ \bullet\,\,x_{14} = \cos{ \frac{27\pi }{17}} + i \sin{\frac{27\pi }{17}} = \frac{1}{16}\left(1+\sqrt{17}-\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}+2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}}\\ \bullet\,\,x_{15} = \cos{ \frac{29\pi }{17}} + i \sin{\frac{29\pi }{17}} = \frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}-2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}+4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\ \bullet\,\,x_{16} = \cos{ \frac{31\pi }{17}} + i \sin{\frac{31\pi }{17}} = \frac{1}{16}\left(1+\sqrt{17}+\sqrt{34+2\sqrt{17}}+2\sqrt{17-3\sqrt{17}-\sqrt{170-38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34+2\sqrt{17}-2\sqrt{34+2\sqrt{17}}-4\sqrt{17-3\sqrt{17}+\sqrt{170-38\sqrt{17}}}}\\ \bullet\,\,x_{17} = \cos{ \frac{33\pi }{17}} + i \sin{\frac{33\pi }{17}} = \frac{1}{16}\left(1-\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}+\sqrt{170+38\sqrt{17}}}\right)-\frac{i}{8}\sqrt{34-2\sqrt{17}-2\sqrt{34-2\sqrt{17}}-4\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\\ \end{array}[/math] I had to change a lot of code to do this, so it is possible that there are some errors. So I will appreciate if you post here the error(s) you can find. |
![]() |
![]() |
![]() |
#36 |
Aug 2002
Buenos Aires, Argentina
22·3·112 Posts |
![]()
I've just added FFT for modular polynomial multiplications when the modulus is small. This enables faster factoring when trying to factor integer polynomials, especially when the number of modular factors is small.
For example, the time required for indicating that x900 + 2 is irreducible changed from 12 seconds to 4.7 seconds. At this moment the bottleneck is the division of polynomials. It appears that I have to implement a divide-and-conquer approach. |
![]() |
![]() |
![]() |
#37 | |
"Robert Gerbicz"
Oct 2005
Hungary
62516 Posts |
![]() Quote:
https://en.wikipedia.org/wiki/Eisenstein%27s_criterion |
|
![]() |
![]() |
![]() |
#38 |
Aug 2002
Buenos Aires, Argentina
22×3×112 Posts |
![]()
You are right. But the Eisenstein criterion cannot be used for all polynomials.
There is still more room for optimization. |
![]() |
![]() |
![]() |
#39 |
Aug 2002
Buenos Aires, Argentina
22×3×112 Posts |
![]()
There were several buffer overflows that I've just fixed during this week. Now it works.
|
![]() |
![]() |
![]() |
#40 |
Aug 2002
Buenos Aires, Argentina
22×3×112 Posts |
![]()
I've just uploaded to the Web server a new version of the polynomial root calculator. Now it can compute the exact roots of quintic equations when the Galois group is 5 (all five roots are real). In this case trigonometric functions are required if we do not want to use complex numbers.
Example: You can select Pari-GP output and check using that tool that the formulas generated by the solver are correct. |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Where can I find a arbitrary precision Calculator online that can handle this # | ONeil | Information & Answers | 9 | 2018-04-17 18:18 |
On polynomials without roots modulo small p | fivemack | Computer Science & Computational Number Theory | 2 | 2015-09-18 12:54 |
How to find values of polynomials with nice factorization? | Drdmitry | Computer Science & Computational Number Theory | 18 | 2015-09-10 12:23 |
How much ECM does it take to find a given factor? | geoff | Factoring | 5 | 2004-09-29 20:14 |
How large a factor can P-1 testing find ? | dsouza123 | Software | 3 | 2003-12-11 00:48 |