mersenneforum.org Largest 10^147-c Brilliant Number (p74*p74)
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

2021-01-04, 05:45   #23
swishzzz

Jan 2012
Toronto, Canada

5·19 Posts
base 2 brilliant numbers

All found before November 2018.

Code:
2^305 + 47261 =
7316490771476709190807652965574102572379302277 *
8909346472058358236842543861359565227710116409

2^307 - 19027 =
11775430370240476555096243348888791129599911451 *
22142766486885472775913011741866569768555016151

2^307 + 371 =
14049124283454209175234576558264433714634147209 *
18559206944869223986131361958393223284004342811
Attached Files
 306b_brilliant.txt (35.9 KB, 102 views) 307b_brilliant.txt (14.8 KB, 111 views) 308b_brilliant.txt (458 Bytes, 110 views)

2021-01-11, 00:34   #24
swishzzz

Jan 2012
Toronto, Canada

5×19 Posts

Adding 2^309±c to the above:

Code:
2^309-31899 =
24781986941524378779451719636879394253653915667 *
42085504376393744737222716439904864143412540839

2^309+19499 =
23517014357815368443003507125370993433302283221 *
44349270022733603968886915824049811627149524991
Attached Files
 309b_brilliant.txt (25.2 KB, 105 views) 310b_brilliant.txt (14.9 KB, 112 views)

 2021-01-22, 09:28 #25 Alfred     May 2013 Germany 3×29 Posts Largest 10^n - c with exactly five equally sized prime factors The solutions for some smaller n are as follows. Code:  n c p q r s t ====================================================================== 41 423906303 103948841 114710363 149953891 203482813 274847773 39 170690097 47957491 57090881 62357359 72085207 81253661 38 17945273 14859149 26589149 49138601 69387613 74232979 37 3737967 12265069 12316999 26021071 28269503 89987411 36 117140009 11983739 11997917 13976143 19075949 26087251 34 8846847 3448663 4321529 7868789 9038629 9434119 33 992687 1743487 3112091 5050681 5613833 6500093 32 6088257 1679213 1796947 2128781 2156351 7219523 31 5846847 1022701 1176899 1384829 2319659 2586377 29 13773393 303871 689957 709909 747157 899237 28 575559 231269 236563 445649 486821 842507 27 2939079 107837 133669 157349 468113 941861 26 13996773 104471 105361 150889 219017 274909 24 2962853 21961 65563 79309 92623 94547 23 3227433 10253 45673 46573 61729 74279 22 1218891 11807 15391 22189 35809 69257 21 3964821 10007 13537 16811 16921 25951 19 6735117 3041 4129 8581 9433 9839 18 343229 1583 2707 3691 6577 9613 17 416447 1327 1483 3001 3371 5023 16 1176773 1033 1229 1319 1447 4127 14 495633 181 751 859 859 997 13 50327 281 293 347 571 613 12 59901 131 131 211 277 997 11 423887 101 103 113 257 331 9 797979 41 61 67 67 89 8 4317 17 29 43 53 89 7 5411 11 17 19 29 97 Lines for the smallest n are written for the sake of completeness only. I was not able to compute the results for the larger n by an algorithm - firstly caused by the very low level of my programming knowledge but secondly maybe by the running time of a well written program? I'd like to get a rough estimation. PS: Continuing with 10^201-c Last fiddled with by Alfred on 2021-01-22 at 09:32
 2021-02-13, 09:34 #26 Alfred     May 2013 Germany 1278 Posts The Big Four I've found the largest four 67-digit numbers with exactly four equally sized prime factors. In 10^67 - c representation: Code:  c p q r s =========================================================================================== 139852557 31431974044879763 46128143017681421 70125424881114271 98352831098894971 171158457 33992983359529783 34882916747820623 90179687845567937 93516705612649471 183261399 38966262167041379 40234767205193857 71686576788802147 88975803112152161 188505137 28896480880207309 43989844864448881 88028052195229997 89367893515033351 The size of my proving file exceeds the 4.00 MB limit for .7z attachments by far. PS: I do not forget about 10^201 - c.
2021-02-26, 19:55   #27
swishzzz

Jan 2012
Toronto, Canada

5·19 Posts
base 2 brilliant numbers

Quote:
 2^317 - 3369 = 436065321852177727665353843557839743263823284547 * 612289870600221313399896732319435654464341654749
A couple more found by Branger on 2020/12/30 which I don't have proof files for that are not listed on https://www.alpertron.com.ar/BRILLIANT2.HTM#twobr:

Quote:
 2^313 - 24133 = 100788170265999753017323085706257528483989089343 * 165569021385057306060482886322484491911556750213 2^313 + 8505 = 118458567629160086527486150975362030803169102833 * 140871184348377129067049239080578375237738238409 2^315 - 19015 = 216834485254286594903496585433315946327767764161 * 307836619227101788652208469732562326355490574073 2^315 + 42701 = 228669422455046776001485409864826671274859838381 * 291904331396343474258089280492317954768687954849
Attached Files
 317b_brilliant.txt (2.9 KB, 83 views)

2021-02-26, 20:08   #28
Branger

Oct 2018

3010 Posts

Quote:
 Originally Posted by swishzzz A couple more found by Branger on 2020/12/30 which I don't have proof files for that are not listed on https://www.alpertron.com.ar/BRILLIANT2.HTM#twobr:
It seems I forgot to post the proof files I had, thank you for the reminder.
Attached Files
 2_311_minus_factored.txt (20.4 KB, 89 views) 2_311_plus_factored.txt (166.2 KB, 87 views) 2_313_minus_factored.txt (54.0 KB, 92 views) 2_313_plus_factored.txt (19.1 KB, 95 views) 2_315_plus_and_minus_factored.txt (138.4 KB, 87 views)

 2021-03-24, 09:13 #29 Alfred     May 2013 Germany 8710 Posts Largest 10^n - c with exactly five equally sized prime factors, part 2 The solutions for n = 42, 43, 44 are as follows. Code:  n c p q r s t ====================================================================== 44 1561244849 182407289 762137381 766498163 960663391 976882183 43 15301041 104012933 175136021 748629481 781365433 938460631 42 46553637 108481379 192785767 207688121 301662217 763198063 PS: 10^201-c is ongoing (with low priority).
2021-03-24, 21:00   #30
Branger

Oct 2018

1E16 Posts

I tried to look for brilliant numbers of the form 2^351+-c, and at least these ones were not in the factordb previously.

Code:
2^351-37629
=
54108213336623751930603114360343420697261006546122961
*
84774509249511338538855788282246318289861325315685779

2^351+74939
=
64719303637275716983586303735926609113831544522059491
*
70875256286568216854922693686888410014999992674845257
Proof files are attached.
Attached Files
 2_351_minus_factored.txt (85.3 KB, 74 views) 2_351_plus_factored.txt (169.6 KB, 77 views)

 2021-04-03, 10:05 #31 bur     Aug 2020 79*6581e-4;3*2539e-3 22·3·5·7 Posts While doing aliquot factoring I came across this humble C114 = P57 * P57: Code: 140257568274260684468077810723210454538642881063207195453406733448965467421304070266933449577747915090059669116521 = 455667808354640170880989459219806232327469502542982654137 * 307806620750132280327670158666075502855210576269751690033 Yes, I know I could just have created this on the fly, but I didn't... ;) Last fiddled with by bur on 2021-04-03 at 10:05
 2021-04-15, 18:00 #32 Alfred     May 2013 Germany 3×29 Posts Largest 10^n - c with exactly five equally sized prime factors, part 3 The solutions for n = 46, 47, 48, 49 are as follows. Code:  n c p q r s t ====================================================================== 49 292349261 4199063917 6046596823 6692964461 7518662791 7826676379 48 19443339 1039529507 4173506713 4220264131 6326926399 8632362059 47 84075503 1186228591 2527734631 2889263309 3333025919 3463174067 46 360258269 1055755553 1528954747 1668451013 1794793691 2068778527 I'm in doubt about any extension of this table. PS: I've downgraded 10^201-c to very low priority.
2021-04-24, 23:21   #33
swishzzz

Jan 2012
Toronto, Canada

5·19 Posts
smallest 340 bit brilliant number

Test run of Amazon EC2 free tier. A 103 digit snfs job with factmsieve.py takes around 2.5 hours on a single t2 micro Windows instance running at 10% CPU capacity, perhaps this will be faster on a Linux instance with CADO.

Code:
2^339 + 15885

Sat Apr 24 15:56:40 2021  p51 factor: 887592350957138861091733941658539740396245192826267
Sat Apr 24 15:56:40 2021  p52 factor: 1261696734859514200896533536322632897894845904544119
Attached Files
 340b_brilliant.txt (12.3 KB, 63 views)

 Thread Tools

 Similar Threads Thread Thread Starter Forum Replies Last Post 2147483647 Factoring 49 2021-08-18 07:41 spkarra Math 3 2010-06-13 21:02 Citrix Prime Sierpinski Project 12 2006-05-19 22:21 Heather Math 90 2006-04-01 22:06 McBryce Lounge 39 2003-08-12 19:35

All times are UTC. The time now is 13:15.

Thu Dec 2 13:15:56 UTC 2021 up 132 days, 7:44, 0 users, load averages: 1.40, 1.56, 1.45

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.