20200714, 11:57  #903  
Nov 2016
3^{4}·31 Posts 
Quote:
Reupdate the zip file Last fiddled with by sweety439 on 20200714 at 12:24 

20200714, 12:14  #904 
Nov 2016
4717_{8} Posts 
Last fiddled with by sweety439 on 20200714 at 12:14 
20200715, 00:25  #905 
Nov 2016
3^{4}×31 Posts 
These ranges are completed: "[]" for the remaining (b,k) pair such that no smaller k for this b, no smaller b for this k, no smaller b and smaller k, are remaining.
(b>=2, k>=1) Sierpinski: [2,21181] b=2, k<=21180 [3,1187] b<=4, k<=1186 [5,181] b<=9, k<=180 [10,100] b<=11, k<=99 [12,12] b<=30, k<=11 [31,1] Riesel: [2,2293] b=2, k<=2292 [3,1613] b<=4, k<=1612 [5,1279] b<=6, k<=1278 [7,679] b<=7, k<=678 [8,239] b<=10, k<=238 [11,201] b<=14, k<=200 [15,47] b<=30, k<=46 [31,5] b<=158, k<=4 [159,3] b<=184, k<=2 [185,1] 
20200715, 21:15  #906  
Nov 2016
3^{4}·31 Posts 
Quote:
Sierpinski: b=2: (see http://www.prothsearch.com/sierp.html) b=3: k=41, n=4892 (k=123, n=4891, k=369, n=4890, k=1107, n=4889) k=523, n=1775 k=621, n=20820 k=821, n=5512 k=823, n=6087 k=935, n=3967 b=4: k=186, n=10458 (k=744, n=10457) k=766, n=3196 k=839, n=1217 b=5: k=40, n=1036 k=61, n=6208 b=6: k=160, n=3143 b=7: k=141, n=1044 b=8: k=173, n=7771 b=9: k=41, n=2446 b=17: k=10, n=1356 b=23: k=8, n=119215 k=10, n=3762 Riesel: b=2: (see http://www.prothsearch.com/rieselprob.html) b=3: k=97, n=3131 (k=291, n=3130, k=873, n=3129) k=119, n=8972 (k=357, n=8971, k=1071, n=8970) k=302, n=2091 (k=906, n=2090) k=313, n=24761 (k=939, n=24760) k=599, n=1240 k=811, n=1126 k=997, n=20847 k=1013, n=1233 k=1093, n=1297 k=1199, n=3876 k=1303, n=1384 b=4: k=74, n=1276 (k=296, n=1275, k=1184, n=1274) k=106, n=4553 (k=424, n=4552) k=373, n=2508 (k=1492, n=2507) k=659, n=400258 k=674, n=5838 k=751, n=6615 k=1103, n=2203 k=1159, n=5628 k=1171, n=2855 k=1189, n=3404 k=1211, n=12621 k=1524, n=1994 b=5: k=86, n=2058 (k=430, n=2057) k=428, n=9704 k=638, n=6974 k=662, n=14628 k=935, n=1560 k=1006, n=4197 b=6: k=251, n=3008 k=1030, n=1199 b=7: k=159, n=4896 (k=1113, n=4895) k=197, n=181761 k=313, n=5907 k=367, n=15118 k=419, n=1052 k=429, n=3815 k=653, n=1051 b=8: k=74, n=2632 k=151, n=2141 k=191, n=1198 k=203, n=1866 k=236, n=5258 b=9: k=119, n=4486 b=11: k=62, n=26202 b=14: k=5, n=19698 (k=70, n=19697) b=17: k=13, n=1123 k=29, n=4904 k=44, n=6488 b=23: k=30, n=1000 b=26: k=32, n=9812 b=27: k=23, n=3742 b=30: k=25, n=34205 b=42: k=3, n=2523 b=47: k=4, n=1555 b=51: k=1, n=4229 b=72: k=4, n=1119849 b=91: k=1, n=4421 b=107: k=2, n=21910 k=3, n=4900 b=115: k=4, n=4223 b=135: k=1, n=1171 b=142: k=1, n=1231 b=152: k=1, n=270217 b=170: k=2, n=166428 b=174: k=1, n=3251 b=184: k=1, n=16703 Last fiddled with by sweety439 on 20200808 at 16:23 

20200715, 23:27  #907 
Nov 2016
4717_{8} Posts 
Store the files for R42 k=3 and k=14 (3*14=42, thus they are duals)
these solved R1764 k=14, k=126=3*42, k=588=14*42, but k=3 is still unsloved Last fiddled with by sweety439 on 20200715 at 23:28 
20200716, 18:06  #908  
Nov 2016
3^{4}×31 Posts 
Quote:
[2,21181] b=2, k<=21180 [3,1187] b<=4, k<=1186 [5,181] b<=15, k<=180 [16,89] b<=16, k<=88 [17,53] b<=26, k<=52 [27,49] b<=30, k<=48 [31,43] b<=40, k<=42 [41,28] b<=46, k<=27 [47,27] b<=52, k<=26 [53,4] b<=82, k<=3 [83,3] b<=364, k=2 [365,2] (k=1 is no longer available, since k=1 for all even b are GFN's and for all odd b are half GFN's) 

20200719, 11:22  #909 
Nov 2016
3^{4}·31 Posts 
Fixed the files
 remove "color used" section  change the better name of "the top 10 k's" column: "only sorted by n" > "sorted by n only" Sierpinski problems Riesel problems 
20200719, 12:06  #910  
Nov 2016
3^{4}·31 Posts 
Quote:
(bases 159, 482, 619, 862, 936, 957 are unlikely to have covering set) Last fiddled with by sweety439 on 20200719 at 12:15 

20200722, 15:14  #911  
Nov 2016
3^{4}·31 Posts 
Quote:
b=2: (see http://www.prothsearch.com/sierp.html) b=3: k=41, n=4892 (k=123, n=4891, k=369, n=4890, k=1107, n=4889) k=523, n=1775 k=621, n=20820 k=821, n=5512 k=823, n=6087 k=935, n=3967 b=4: k=186, n=10458 (k=744, n=10457) k=766, n=3196 k=839, n=1217 b=5: k=40, n=1036 k=61, n=6208 b=6: k=160, n=3143 b=7: k=141, n=1044 b=8: k=173, n=7771 b=9: k=41, n=2446 b=13: k=29, n=10574 k=48, n=6267 k=120, n=1552 b=14: k=73, n=1182 k=145, n=1176 b=16: k=23, n=1074 b=17: k=10, n=1356 b=20: k=43, n=2956 b=23: k=8, n=119215 k=10, n=3762 b=26: k=32, n=318071 b=27: k=33, n=7876 b=30: k=12, n=1023 b=31: k=5, n=1026 b=33: k=36, n=23615 b=37: k=19, n=5310 b=38: k=2, n=2729 k=31, n=1528 b=45: k=24, n=18522 b=46: k=17, n=4920 b=101: k=2, n=192275 b=104: k=2, n=1233 b=167: k=2, n=6547 b=206: k=2, n=46205 b=218: k=2, n=333925 b=236: k=2, n=161229 b=257: k=2, n=12183 b=287: k=2, n=5467 b=305: k=2, n=16807 b=353: k=2, n=2313 Last fiddled with by sweety439 on 20200722 at 16:25 

20200724, 14:39  #912 
Nov 2016
9CF_{16} Posts 
Searched to 5M, "NA" if > 5M, almost done to base 2500 ....

20200724, 15:41  #913 
Nov 2016
2511_{10} Posts 

Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Semiprime and nalmost prime candidate for the k's with algebra for the Sierpinski/Riesel problem  sweety439  sweety439  11  20200923 01:42 
The reverse Sierpinski/Riesel problem  sweety439  sweety439  20  20200703 17:22 
The dual Sierpinski/Riesel problem  sweety439  sweety439  12  20171201 21:56 
Sierpinski/ Riesel bases 6 to 18  robert44444uk  Conjectures 'R Us  139  20071217 05:17 
Sierpinski/Riesel Base 10  rogue  Conjectures 'R Us  11  20071217 05:08 