mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > Riesel Prime Search

Reply
 
Thread Tools
Old 2011-12-25, 17:38   #386
SaneMur
 
Jul 2011

32×13 Posts
Default

Riesel primes with k = 25790513410853719562625473025
exist for n =

16, 21, 26, 28, 32, 33, 36, 37, 38, 39,
45, 54, 56, 57, 59, 60, 67, 68, 76, 86,
101, 106, 134, 135, 138, 146, 155, 157, 170, 188,
190, 209, 220, 224, 243, 255, 258, 276, 351, 353,
381, 392, 395, 416, 425, 502, 511, 564, 600, 646,
657, 671, 691, 720, 741, 790, 793, 854, 861, 869,
887, 895, 922, 926, 969, 997, 998, 1037, 1049, 1128,
1294, 1387, 1398, 1478, 1562, 1606, 1663, 1745, 1758, 2208,
2277, 2331, 2386, 2391, 2431, 2535, 2760, 2988, 3053, 3454,
3693, 4047, 4357, 4486, 4689, 5918, 5967, 6539, 6737, 6751,
6823, 6825, 6860, 7427, 7512, 7676, 8203, 8211, 8408, 8713,
10256, 10337, 10976, 11494, 12295, 14691, 14902, 16110, 16845, 17473,
19418, 24014, 25584, 29989, 30672, 31307, 34951, 38689, 38843, 41032,
41763, 45833, 53454, 54576, 62344, 73453, 74468, 75052, 77089, 81964,
83305, 95724, 105116, 112777, 116080, 120073

Searched up to: 125K
Reserving this constant for future work
SaneMur is offline   Reply With Quote
Old 2011-12-25, 17:40   #387
SaneMur
 
Jul 2011

32×13 Posts
Default

(bold = new prime)

Riesel primes with k = 10000000001
exist for n =

2, 50, 326, 482, 902, 1638, 28286, 219506

Searched up to: 250K

Last fiddled with by SaneMur on 2011-12-25 at 17:41
SaneMur is offline   Reply With Quote
Old 2011-12-27, 17:53   #388
firejuggler
 
firejuggler's Avatar
 
Apr 2010
Over the rainbow

43×59 Posts
Default

k= 2712, b =2011
prime n :
0
2
18
36
120
142
4511
searched up to n=5600 (still searching)

odd and even exponent prime?

Last fiddled with by firejuggler on 2011-12-27 at 17:55
firejuggler is offline   Reply With Quote
Old 2012-01-01, 23:03   #389
Thomas11
 
Thomas11's Avatar
 
Feb 2003

77416 Posts
Default

Quote:
Originally Posted by firejuggler View Post
k= 2712, b =2011
The primes you reported are for the type k*b^n-1, right? At least the first one, n=0, is a twin prime.

Quote:
Originally Posted by firejuggler View Post
odd and even exponent prime?
Since you have an odd base and an even multiplier (k), there's no (obvious) limitation for the exponent (n). Even and odd exponents both yield odd numbers, which might be primes.
Of course, for some specific (k,b) combinations there may exist some (small) factors which eliminate all odd or all even exponents, thus yielding only even or only odd exponent primes.
For example: p=3 divides 5*2^n-1 for odd exponents and 7*2^n-1 for even exponents.

Note, that for the new year (b=2012) there's no restriction on the multiplier (for b=2011 the k had to be an even number). Thus you can test January, February, March, ...

BTW.: Happy New Year!

Last fiddled with by Thomas11 on 2012-01-01 at 23:04
Thomas11 is offline   Reply With Quote
Old 2012-01-07, 13:19   #390
sjtjung
 
sjtjung's Avatar
 
Mar 2006
Columbus, OH

7·11 Posts
Default

2055*2^667599-1 is prime. (200971 digits)
sjtjung is offline   Reply With Quote
Old 2012-03-11, 23:20   #391
otutusaus
 
Nov 2010
Ann Arbor, MI

2·47 Posts
Default k=3011-3999

Reserving k=3011-3999 to n=200k (initially).
Any work previously done will be DC'ed.
otutusaus is offline   Reply With Quote
Old 2012-03-19, 19:00   #392
firejuggler
 
firejuggler's Avatar
 
Apr 2010
Over the rainbow

43·59 Posts
Default

k=9884615561, b=2, n=1-1e6

Code:
9884615561*2^7+1
9884615561*2^13+1
9884615561*2^49+1
9884615561*2^105+1
9884615561*2^159+1
9884615561*2^177+1
9884615561*2^219+1
9884615561*2^1057+1
9884615561*2^1255+1
9884615561*2^2935+1
9884615561*2^4137+1
9884615561*2^4263+1
9884615561*2^5877+1
9884615561*2^6123+1
9884615561*2^15479+1
9884615561*2^33603+1
9884615561*2^37845+1
9884615561*2^39525+1
9884615561*2^57669+1
9884615561*2^64239+1
9884615561*2^81337+1
9884615561*2^173523+1
9884615561*2^245097+1
9884615561*2^299229+1
at n=405k atm, will go untill i find a top-5000 (around n=660k?)
firejuggler is offline   Reply With Quote
Old 2012-03-20, 04:42   #393
Kosmaj
 
Kosmaj's Avatar
 
Nov 2003

2·1,811 Posts
Default

Quote:
Originally Posted by firejuggler View Post
at n=405k atm, will go untill i find a top-5000 (around n=660k?)
Well, no, now it's around 728k, and by the time you find a prime it might be at 750k.
Kosmaj is offline   Reply With Quote
Old 2013-08-16, 00:26   #394
c10ck3r
 
c10ck3r's Avatar
 
Aug 2010
Kansas

22316 Posts
Default Small Primes

Well, I don't really see a better place for these at the moment, so...
Until further notice, post small Riesel primes here :P

For the following k's tested from 20k to 50k:
Code:
3401
3403
3405
3407
3409
3411
3413
3415
3417
3419
3421
3423
3425
3427
3429
3431
3433
3435
3437
3439
3441
3443
3445
3447
3449
3451
3453
3455
3457
3459
3461
3463
3465
3467
3469
3471
3473
3475
3477
3479
3481
3483
3485
3487
3489
3491
3493
3495
3497
3499
3501
3503
3505
3507
3509
3511
3513
3515
3517
3519
3521
3523
3525
3527
3529
3531
3533
3535
3537
3539
3541
3543
3545
3547
3549
3551
3553
3555
3557
3559
3561
3563
3565
3567
3569
3571
3573
3575
3577
3579
3581
3583
3585
3587
3589
3591
3593
3595
3597
3599
3601
3603
3605
3607
3609
3611
3613
3615
3617
3619
3621
3623
3625
3627
3629
3631
3633
3635
3637
3639
3641
3643
3645
3647
3649
3651
3653
3655
3657
3659
3661
3663
3665
3667
3669
3671
3673
3675
3677
3679
3681
3683
3685
3687
3689
3691
3693
3695
3697
3699
3701
3703
3705
3707
3709
3711
3713
3715
3717
3719
3721
3723
3725
3727
3729
3731
3733
3735
3737
3739
3741
3743
3745
3747
3749
3751
3753
3755
3757
3759
3761
3763
3765
3767
3769
3771
3773
3775
3777
3779
3781
3783
3785
3787
3789
3791
3793
3795
3797
3799
3801
3803
3805
3807
3809
3811
3813
3815
3817
3819
3821
3823
3825
3827
3829
3831
3833
3835
3837
3839
3841
3843
3845
3847
3849
3851
3853
3855
3857
3859
3861
3863
3865
3867
3869
3871
3873
3875
3877
3879
3881
3883
3885
3887
3889
3891
3893
3895
3897
3899
3901
3903
3905
3907
3909
3911
3913
3915
3917
3919
3921
3923
3925
3927
3929
3931
3933
3935
3937
3939
3941
3943
3945
3947
3949
3951
3953
3955
3957
3959
3961
3963
3965
3967
3969
3971
3973
3975
3977
3979
3981
3983
3985
3987
3989
3991
3993
3995
3997
3999
8113
8115
8117
8119
8121
8123
8125
8131
8133
8135
8137
8139
8141
8147
8149
8151
8153
8155
8157
8161
8163
8165
8167
8169
8171
8177
8179
8181
8183
8185
8187
8189
8191
8193
8195
8197
8199
I found the attached primes.
Attached Files
File Type: txt PRIMES.txt (11.5 KB, 168 views)
c10ck3r is offline   Reply With Quote
Old 2013-09-07, 14:39   #395
Trilo
 
Trilo's Avatar
 
"W. Byerly"
Aug 2013
1423*2^2179023-1

103 Posts
Default

k= 211463471505 25k- 150k
25615
25970
47056
47808
58838
67355
75022
81990
88670
103437
103870
106186
112669
114288
144453
149450
k= 233806014585 25k- 97k:
26934
30618
30685
31887
32406
32522
33299
40113
46377
47353
48537
49659
50517
53276
54727
55136
82108
87801
k= 54896985 10k- 77k
10167
12188
12247
13703
17202
17398
17890
18914
20080
21643
22553
24523
25096
28109
29607
30977
33661
36793
38657
45297
55212
62379
68150

Last fiddled with by Trilo on 2013-09-07 at 14:40
Trilo is offline   Reply With Quote
Old 2015-02-09, 04:13   #396
sjtjung
 
sjtjung's Avatar
 
Mar 2006
Columbus, OH

7·11 Posts
Default

2175*2^876843-1 is prime
sjtjung is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
16e Post Processing Progress pinhodecarlos NFS@Home 8 2018-11-28 13:45
Sieving with powers of small primes in the Small Prime variation of the Quadratic Sieve mickfrancis Factoring 2 2016-05-06 08:13
Sierpinski/Riesel Base 5: Post Primes Here robert44444uk Sierpinski/Riesel Base 5 358 2008-12-08 16:28
Small Primes Housemouse Math 2 2008-06-04 05:23
POST PRIMES you've found here, and name or prover code TTn 15k Search 415 2006-03-02 21:17

All times are UTC. The time now is 16:30.

Thu Apr 15 16:30:42 UTC 2021 up 7 days, 11:11, 1 user, load averages: 3.77, 3.10, 2.96

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.