![]() |
![]() |
#386 |
Jul 2011
32×13 Posts |
![]()
Riesel primes with k = 25790513410853719562625473025
exist for n = 16, 21, 26, 28, 32, 33, 36, 37, 38, 39, 45, 54, 56, 57, 59, 60, 67, 68, 76, 86, 101, 106, 134, 135, 138, 146, 155, 157, 170, 188, 190, 209, 220, 224, 243, 255, 258, 276, 351, 353, 381, 392, 395, 416, 425, 502, 511, 564, 600, 646, 657, 671, 691, 720, 741, 790, 793, 854, 861, 869, 887, 895, 922, 926, 969, 997, 998, 1037, 1049, 1128, 1294, 1387, 1398, 1478, 1562, 1606, 1663, 1745, 1758, 2208, 2277, 2331, 2386, 2391, 2431, 2535, 2760, 2988, 3053, 3454, 3693, 4047, 4357, 4486, 4689, 5918, 5967, 6539, 6737, 6751, 6823, 6825, 6860, 7427, 7512, 7676, 8203, 8211, 8408, 8713, 10256, 10337, 10976, 11494, 12295, 14691, 14902, 16110, 16845, 17473, 19418, 24014, 25584, 29989, 30672, 31307, 34951, 38689, 38843, 41032, 41763, 45833, 53454, 54576, 62344, 73453, 74468, 75052, 77089, 81964, 83305, 95724, 105116, 112777, 116080, 120073 Searched up to: 125K Reserving this constant for future work |
![]() |
![]() |
![]() |
#387 |
Jul 2011
32×13 Posts |
![]()
(bold = new prime)
Riesel primes with k = 10000000001 exist for n = 2, 50, 326, 482, 902, 1638, 28286, 219506 Searched up to: 250K Last fiddled with by SaneMur on 2011-12-25 at 17:41 |
![]() |
![]() |
![]() |
#388 |
Apr 2010
Over the rainbow
43×59 Posts |
![]()
k= 2712, b =2011
prime n : 0 2 18 36 120 142 4511 searched up to n=5600 (still searching) odd and even exponent prime? Last fiddled with by firejuggler on 2011-12-27 at 17:55 |
![]() |
![]() |
![]() |
#389 |
Feb 2003
77416 Posts |
![]()
The primes you reported are for the type k*b^n-1, right? At least the first one, n=0, is a twin prime.
Since you have an odd base and an even multiplier (k), there's no (obvious) limitation for the exponent (n). Even and odd exponents both yield odd numbers, which might be primes. Of course, for some specific (k,b) combinations there may exist some (small) factors which eliminate all odd or all even exponents, thus yielding only even or only odd exponent primes. For example: p=3 divides 5*2^n-1 for odd exponents and 7*2^n-1 for even exponents. Note, that for the new year (b=2012) there's no restriction on the multiplier (for b=2011 the k had to be an even number). Thus you can test January, February, March, ... ![]() BTW.: Happy New Year! Last fiddled with by Thomas11 on 2012-01-01 at 23:04 |
![]() |
![]() |
![]() |
#390 |
Mar 2006
Columbus, OH
7·11 Posts |
![]()
2055*2^667599-1 is prime. (200971 digits)
|
![]() |
![]() |
![]() |
#391 |
Nov 2010
Ann Arbor, MI
2·47 Posts |
![]()
Reserving k=3011-3999 to n=200k (initially).
Any work previously done will be DC'ed. |
![]() |
![]() |
![]() |
#392 |
Apr 2010
Over the rainbow
43·59 Posts |
![]()
k=9884615561, b=2, n=1-1e6
Code:
9884615561*2^7+1 9884615561*2^13+1 9884615561*2^49+1 9884615561*2^105+1 9884615561*2^159+1 9884615561*2^177+1 9884615561*2^219+1 9884615561*2^1057+1 9884615561*2^1255+1 9884615561*2^2935+1 9884615561*2^4137+1 9884615561*2^4263+1 9884615561*2^5877+1 9884615561*2^6123+1 9884615561*2^15479+1 9884615561*2^33603+1 9884615561*2^37845+1 9884615561*2^39525+1 9884615561*2^57669+1 9884615561*2^64239+1 9884615561*2^81337+1 9884615561*2^173523+1 9884615561*2^245097+1 9884615561*2^299229+1 |
![]() |
![]() |
![]() |
#393 |
Nov 2003
2·1,811 Posts |
![]() |
![]() |
![]() |
![]() |
#394 |
Aug 2010
Kansas
22316 Posts |
![]()
Well, I don't really see a better place for these at the moment, so...
Until further notice, post small Riesel primes here :P For the following k's tested from 20k to 50k: Code:
3401 3403 3405 3407 3409 3411 3413 3415 3417 3419 3421 3423 3425 3427 3429 3431 3433 3435 3437 3439 3441 3443 3445 3447 3449 3451 3453 3455 3457 3459 3461 3463 3465 3467 3469 3471 3473 3475 3477 3479 3481 3483 3485 3487 3489 3491 3493 3495 3497 3499 3501 3503 3505 3507 3509 3511 3513 3515 3517 3519 3521 3523 3525 3527 3529 3531 3533 3535 3537 3539 3541 3543 3545 3547 3549 3551 3553 3555 3557 3559 3561 3563 3565 3567 3569 3571 3573 3575 3577 3579 3581 3583 3585 3587 3589 3591 3593 3595 3597 3599 3601 3603 3605 3607 3609 3611 3613 3615 3617 3619 3621 3623 3625 3627 3629 3631 3633 3635 3637 3639 3641 3643 3645 3647 3649 3651 3653 3655 3657 3659 3661 3663 3665 3667 3669 3671 3673 3675 3677 3679 3681 3683 3685 3687 3689 3691 3693 3695 3697 3699 3701 3703 3705 3707 3709 3711 3713 3715 3717 3719 3721 3723 3725 3727 3729 3731 3733 3735 3737 3739 3741 3743 3745 3747 3749 3751 3753 3755 3757 3759 3761 3763 3765 3767 3769 3771 3773 3775 3777 3779 3781 3783 3785 3787 3789 3791 3793 3795 3797 3799 3801 3803 3805 3807 3809 3811 3813 3815 3817 3819 3821 3823 3825 3827 3829 3831 3833 3835 3837 3839 3841 3843 3845 3847 3849 3851 3853 3855 3857 3859 3861 3863 3865 3867 3869 3871 3873 3875 3877 3879 3881 3883 3885 3887 3889 3891 3893 3895 3897 3899 3901 3903 3905 3907 3909 3911 3913 3915 3917 3919 3921 3923 3925 3927 3929 3931 3933 3935 3937 3939 3941 3943 3945 3947 3949 3951 3953 3955 3957 3959 3961 3963 3965 3967 3969 3971 3973 3975 3977 3979 3981 3983 3985 3987 3989 3991 3993 3995 3997 3999 8113 8115 8117 8119 8121 8123 8125 8131 8133 8135 8137 8139 8141 8147 8149 8151 8153 8155 8157 8161 8163 8165 8167 8169 8171 8177 8179 8181 8183 8185 8187 8189 8191 8193 8195 8197 8199 |
![]() |
![]() |
![]() |
#395 |
"W. Byerly"
Aug 2013
1423*2^2179023-1
103 Posts |
![]()
k= 211463471505 25k- 150k
25615 25970 47056 47808 58838 67355 75022 81990 88670 103437 103870 106186 112669 114288 144453 149450 k= 233806014585 25k- 97k: 26934 30618 30685 31887 32406 32522 33299 40113 46377 47353 48537 49659 50517 53276 54727 55136 82108 87801 k= 54896985 10k- 77k 10167 12188 12247 13703 17202 17398 17890 18914 20080 21643 22553 24523 25096 28109 29607 30977 33661 36793 38657 45297 55212 62379 68150 Last fiddled with by Trilo on 2013-09-07 at 14:40 |
![]() |
![]() |
![]() |
#396 |
Mar 2006
Columbus, OH
7·11 Posts |
![]()
2175*2^876843-1 is prime
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
16e Post Processing Progress | pinhodecarlos | NFS@Home | 8 | 2018-11-28 13:45 |
Sieving with powers of small primes in the Small Prime variation of the Quadratic Sieve | mickfrancis | Factoring | 2 | 2016-05-06 08:13 |
Sierpinski/Riesel Base 5: Post Primes Here | robert44444uk | Sierpinski/Riesel Base 5 | 358 | 2008-12-08 16:28 |
Small Primes | Housemouse | Math | 2 | 2008-06-04 05:23 |
POST PRIMES you've found here, and name or prover code | TTn | 15k Search | 415 | 2006-03-02 21:17 |