![]() |
![]() |
#1134 |
Nov 2016
22·3·5·47 Posts |
![]() Code:
1,11 2,2 3,27 4,1 5,12 6,1 7,1 8,2 9,(partial algebra factors) 10,5 11,0 12,2 13,0 14,4 15,0 16,231 All k where k = m^2 and m = = 3 or 5 mod 8: for even n let k = m^2 and let n = 2*q; factors to: (m*137^q - 1) * (m*137^q + 1) odd n: factor of 2 This includes k = 9 k = 11, 13, 15 remain at n=2000 Last fiddled with by sweety439 on 2021-02-25 at 22:38 |
![]() |
![]() |
![]() |
#1135 |
Nov 2016
22·3·5·47 Posts |
![]() Code:
1,2 138,1 275,1 412,2 549,4 686,1 823,1 960,1 1097,6 1234,28 1371,1 1508,2 1645,1 1782,2 Only list k == 1 mod 137 since other k are already in CRUS no remain k with k == 1 mod 137, totally list of the remain k is {408, 688, 831, 1074, 1743}, all remain at n=300K, see CRUS Last fiddled with by sweety439 on 2021-02-27 at 06:57 |
![]() |
![]() |
![]() |
#1136 |
Nov 2016
22×3×5×47 Posts |
![]() Code:
1,163 2,1 3,114 4,(partial algebra factors) 5,1 All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*139^q - 1) * (m*139^q + 1) odd n: factor of 5 This includes k = 4 Conjecture proven |
![]() |
![]() |
![]() |
#1137 |
Nov 2016
1011000001002 Posts |
![]() Code:
1,79 2,2 3,1 4,5 5,30 6,1 7,7 8,2 9,1 10,1 11,108 12,2 13,7 14,16 15,1 16,1 17,8 18,6 19,1 20,2 21,1 22,1 23,2 24,1 25,1 26,4 27,1 28,1 29,18 30,2 31,1 32,16 33,12 34,1 35,6 36,1 37,1 38,448 39,2 40,9 41,8 42,1 43,3 44,2 45,1 Conjecture proven |
![]() |
![]() |
![]() |
#1138 |
Nov 2016
22·3·5·47 Posts |
![]()
A (Sierpinski/Riesel) base b has 2-cover if and only if b+1 is not prime or prime power
|
![]() |
![]() |
![]() |
#1139 |
Nov 2016
282010 Posts |
![]()
The formula for Sierpinski conjectures in CRUS is k*b^n+1
The formula for Riesel conjectures in CRUS is k*b^n-1 The formula for Sierpinski conjectures in this project is (k*b^n+1)/gcd(k+1,b-1) The formula for Riesel conjectures in this project is (k*b^n-1)/gcd(k-1,b-1) |
![]() |
![]() |
![]() |
#1140 |
Nov 2016
22·3·5·47 Posts |
![]()
The reason for (k=27 is excluded from S8 in this project) (k=4 is excluded from S16 in this project) (k=1 is excluded from R4 in this project) (k=1 is excluded from R8 in this project) (k=1 is excluded from R16 in this project) (k=1 is excluded from R36 in this project) (k=1 is excluded from R100 in this project) (k=1 is excluded from R128 in this project) is the same as (k=1 is excluded from R14 in CRUS) (k=1 is excluded from R18 in CRUS) (k=1 is excluded from R20 in CRUS) (k=1 is excluded from R24 in CRUS) (k=1 is excluded from R30 in CRUS) (k=1 is excluded from R32 in CRUS) (k=1 is excluded from R38 in CRUS) (k=1 is excluded from R42 in CRUS)
|
![]() |
![]() |
![]() |
#1141 |
Nov 2016
22·3·5·47 Posts |
![]()
searched to n=2000, see the text file for the status, 0 if no (probable) prime found for this k
CK=285 Only k = 201 remain at n=2000 Last fiddled with by sweety439 on 2020-12-22 at 00:19 |
![]() |
![]() |
![]() |
#1142 |
Nov 2016
22×3×5×47 Posts |
![]() Code:
1,1231 2,1 3,26 4,3 5,1 6,3 7,1 8,7 9,1 10,2 11,14 Conjecture proven |
![]() |
![]() |
![]() |
#1143 |
Nov 2016
22·3·5·47 Posts |
![]() Code:
1,3 2,2 3,16 4,1 Conjecture proven |
![]() |
![]() |
![]() |
#1144 |
Nov 2016
22×3×5×47 Posts |
![]() Code:
1,(full algebra factors) 2,24 3,1 4,(full algebra factors) 5,1 6,1 7,5 8,1 9,(full algebra factors) 10,1 11,1 12,1 13,1 14,4 15,10 16,(full algebra factors) 17,1 18,1 19,4 20,1 21,1 22,1 23,134 24,2 25,(full algebra factors) 26,5 27,2 28,2 29,4 30,519 31,1 32,3 33,1 34,8 35,1 36,(full algebra factors) 37,3 38,1 39,964 40,1 41,1 42,1 43,2 44,6 45,3 46,97 47,2 48,1 49,(full algebra factors) 50,2 51,3 52,1 53,1 54,8 55,1 56,1 57,20 58,35 All k = m^2 for all n; factors to: (m*12^n - 1) * (m*12^n + 1) This includes k = 1, 4, 9, 16, 25, 36, 49 Conjecture proven |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
The dual Sierpinski/Riesel problem | sweety439 | sweety439 | 14 | 2021-02-15 15:58 |
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem | sweety439 | sweety439 | 11 | 2020-09-23 01:42 |
The reverse Sierpinski/Riesel problem | sweety439 | sweety439 | 20 | 2020-07-03 17:22 |
Sierpinski/ Riesel bases 6 to 18 | robert44444uk | Conjectures 'R Us | 139 | 2007-12-17 05:17 |
Sierpinski/Riesel Base 10 | rogue | Conjectures 'R Us | 11 | 2007-12-17 05:08 |