mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > XYYXF Project

Reply
 
Thread Tools
Old 2022-05-28, 08:12   #45
xilman
Bamboozled!
 
xilman's Avatar
 
"๐’‰บ๐’ŒŒ๐’‡ท๐’†ท๐’€ญ"
May 2003
Down not across

11×1,039 Posts
Default

Uploaded L(4153,2154)

Reserving (3892,765)

Last fiddled with by xilman on 2022-05-28 at 09:17 Reason: Add reservation
xilman is online now   Reply With Quote
Old 2022-05-30, 03:34   #46
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

2×3×11×37 Posts
Default

(3423,3070) is done, and FactorDB is verifying.
I'll reserve (3712,1407).

Last fiddled with by frmky on 2022-05-30 at 03:38
frmky is offline   Reply With Quote
Old 2022-05-31, 19:15   #47
pxp
 
pxp's Avatar
 
Sep 2010
Weston, Ontario

229 Posts
Default

Quote:
Originally Posted by frmky View Post
Are certificates for (2930,2739) and (3265,1234) available anywhere? They are not in FactorDB, a Google search came up empty, and they aren't listed on Franรงois Morain's site.
I've just rediscovered on old document of mine wherein I had noted (at the time) 25 proven-prime listings in Kulsha's database that were still PRP in factordb. Going through them, I note that now all but 4 of them are P in factordb. These 4 are:

298 5769007 10073 (2930,2739)
299 5789897 10094 (3265,1234)
621 28333594 25050 (6753,5122)
715 38951950 30008 (8656,2929)

In my Leyland-prime masterlist, I will change the current P to a K to indicate that.
pxp is offline   Reply With Quote
Old 2022-05-31, 21:18   #48
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

2·3·11·37 Posts
Default

I just uploaded a certificate for (6753,5122). I might rerun the first two soon since no certificate seems to be available.
frmky is offline   Reply With Quote
Old 2022-06-03, 14:33   #49
xilman
Bamboozled!
 
xilman's Avatar
 
"๐’‰บ๐’ŒŒ๐’‡ท๐’†ท๐’€ญ"
May 2003
Down not across

1142910 Posts
Default

Quote:
Originally Posted by xilman View Post
Uploaded L(4153,2154)

Reserving (3892,765)
Uploaded (3892,765)

Thinking whether to do another one or whether to return to factoring.
xilman is online now   Reply With Quote
Old 2022-06-14, 19:35   #50
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

2×3×11×37 Posts
Default

(57285,2) is done. (78296,3) is in progress.
frmky is offline   Reply With Quote
Old 2022-06-15, 20:54   #51
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

2·3·11·37 Posts
Default

(3213,2942) is done.
frmky is offline   Reply With Quote
Old 2022-06-30, 16:33   #52
storm5510
Random Account
 
storm5510's Avatar
 
Aug 2009
Not U. + S.A.

2,281 Posts
Default

Quote:
Originally Posted by xilman View Post
Taking 4153^2154 + 2154^4153
Quote:
4153^2154+2154^4153 is 3-PRP! (2.0381s+0.0021s)
The above only took a few seconds. You must be running it in a different way?
storm5510 is offline   Reply With Quote
Old 2022-06-30, 16:47   #53
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

22·1,063 Posts
Default

Quote:
Originally Posted by storm5510 View Post
The above only took a few seconds. You must be running it in a different way?
This is prime hunting 101. The number 91 is 3-PRP yet factors into 7*13. To be 100% sure of primality we need to follow a method that actually proves the number prime -- in this case ECPP is used for xilman's number.
paulunderwood is offline   Reply With Quote
Old 2022-06-30, 17:03   #54
storm5510
Random Account
 
storm5510's Avatar
 
Aug 2009
Not U. + S.A.

2,281 Posts
Default

Quote:
Originally Posted by paulunderwood View Post
This is prime hunting 101. The number 91 is 3-PRP yet factors into 7*13. To be 100% sure of primality we need to follow a method that actually proves the number prime -- in this case ECPP is used for xilman's number.
Very well.

Above, someone mentions (3892,765). 3892^765+765^3892, if I understand the notation correctly. This must be the last value in a range from something lower. I understand how to use pfgw, but this expression of a single sequence throws me.
storm5510 is offline   Reply With Quote
Old 2022-06-30, 17:07   #55
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

10000100111002 Posts
Default

Quote:
Originally Posted by storm5510 View Post
Very well.

Above, someone mentions (3892,765). 3892^765+765^3892, if I understand the notation correctly. This must be the last value in a range from something lower. I understand how to use pfgw, but this expression of a single sequence throws me.
You understood correctly: (3892,765) is shorthand notation herein for 3892^765+765^3892.
paulunderwood is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Leyland Primes (x^y+y^x primes) Batalov XYYXF Project 579 2022-08-17 08:31
On Leyland Primes davar55 Puzzles 9 2016-03-15 20:55
Leyland Numbers - Numberphile Mini-Geek Lounge 5 2014-10-29 07:28
Status of GIMPS proofs Brian-E Information & Answers 7 2007-08-02 23:15
Collection of Proofs? Orgasmic Troll Math 1 2004-12-30 15:10

All times are UTC. The time now is 10:52.


Wed Aug 17 10:52:41 UTC 2022 up 41 days, 5:40, 1 user, load averages: 1.14, 1.21, 1.23

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

โ‰  ยฑ โˆ“ รท ร— ยท โˆ’ โˆš โ€ฐ โŠ— โŠ• โŠ– โŠ˜ โŠ™ โ‰ค โ‰ฅ โ‰ฆ โ‰ง โ‰จ โ‰ฉ โ‰บ โ‰ป โ‰ผ โ‰ฝ โŠ โŠ โŠ‘ โŠ’ ยฒ ยณ ยฐ
โˆ  โˆŸ ยฐ โ‰… ~ โ€– โŸ‚ โซ›
โ‰ก โ‰œ โ‰ˆ โˆ โˆž โ‰ช โ‰ซ โŒŠโŒ‹ โŒˆโŒ‰ โˆ˜ โˆ โˆ โˆ‘ โˆง โˆจ โˆฉ โˆช โจ€ โŠ• โŠ— ๐–• ๐–– ๐–— โŠฒ โŠณ
โˆ… โˆ– โˆ โ†ฆ โ†ฃ โˆฉ โˆช โŠ† โŠ‚ โŠ„ โŠŠ โŠ‡ โŠƒ โŠ… โŠ‹ โŠ– โˆˆ โˆ‰ โˆ‹ โˆŒ โ„• โ„ค โ„š โ„ โ„‚ โ„ต โ„ถ โ„ท โ„ธ ๐“Ÿ
ยฌ โˆจ โˆง โŠ• โ†’ โ† โ‡’ โ‡ โ‡” โˆ€ โˆƒ โˆ„ โˆด โˆต โŠค โŠฅ โŠข โŠจ โซค โŠฃ โ€ฆ โ‹ฏ โ‹ฎ โ‹ฐ โ‹ฑ
โˆซ โˆฌ โˆญ โˆฎ โˆฏ โˆฐ โˆ‡ โˆ† ฮด โˆ‚ โ„ฑ โ„’ โ„“
๐›ข๐›ผ ๐›ฃ๐›ฝ ๐›ค๐›พ ๐›ฅ๐›ฟ ๐›ฆ๐œ€๐œ– ๐›ง๐œ ๐›จ๐œ‚ ๐›ฉ๐œƒ๐œ— ๐›ช๐œ„ ๐›ซ๐œ… ๐›ฌ๐œ† ๐›ญ๐œ‡ ๐›ฎ๐œˆ ๐›ฏ๐œ‰ ๐›ฐ๐œŠ ๐›ฑ๐œ‹ ๐›ฒ๐œŒ ๐›ด๐œŽ๐œ ๐›ต๐œ ๐›ถ๐œ ๐›ท๐œ™๐œ‘ ๐›ธ๐œ’ ๐›น๐œ“ ๐›บ๐œ”