mersenneforum.org generalized minimal (probable) primes
 Register FAQ Search Today's Posts Mark Forums Read

2020-11-25, 08:43   #56
sweety439

Nov 2016

22×691 Posts

Quote:
 Originally Posted by sweety439 These bases are the bases <= 1024 which is not perfect odd power (of the form m^r with odd r>1) whose "minimal prime program" have GFN or half GFN remain, for the bases <= 1024 which is perfect odd power (of the form m^r with odd r>1): * Cubes: ** Base 8: GFN in base 2 are either 2{0}1 or 4{0}1 in base 8, however, 2 and 401 are primes, thus, base 8 does not have GFN or half GFN remain. ** Base 27: half GFN in base 3 are either 1{D}E or 4{D}E in base 27, however, D is prime, thus, base 27 does not have GFN or half GFN remain. ** Base 64: GFN in base 2 are either 4{0}1 or G{0}1 in base 64, however, 41 and G01 are primes, thus, base 64 does not have GFN or half GFN remain. ** Base 125: half GFN in base 5 are either 2:{62}:63 or 12:{62}:63 in base 125, however, 2 is prime, but the family 12:{62}:63 does not have any known (probable) prime (the only known half GFN (probable) primes in base 5 are 3, 13, 2:63), thus, base 125 has half GFN remain. ** Base 216: GFN in base 6 are either 6:{0}:1 or 36:{0}:1 in base 216, however, 6:1 is prime, but the family 36:{0}:1 does not have any known prime (the only known GFN primes in base 6 are 7, 37, 6:1), thus, base 216 has GFN remain. ** Base 343: half GFN in base 7 are either 3:{171}:172 or 24:{171}:172 in base 343, however, 3 is prime, but the family 24:{171}:172 does not have any known (probable) prime (the only known half GFN (probable) prime in base 7 is 3:172), thus, base 343 has half GFN remain. ** Base 512: GFN in base 2 are 2:{0}:1, 4:{0}:1, 16:{0}:1, 32:{0}:1, 128:{0}:1, or 256:{0}:1 in base 512, however, 2 and 128:1 are primes, but the families 4:{0}:1, 16:{0}:1, 32:{0}:1, 256:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 257, 128:1), thus, base 512 has GFN remain. ** Base 729: half GFN in base 3 are either 4:{364}:365 or 40:{364}:365 in base 729, however, 40:364:365 and 4:364:364:364:364:365 are primes, thus, base 729 does not have GFN or half GFN remain. ** Base 1000: GFN in base 10 are either 10:{0}:1 or 100:{0}:1 in base 1000, and both families do not have any known prime (the only known GFN primes in base 10 are 11 and 101), thus, base 1000 has GFN remain. * 5th powers: ** Base 32: GFN in base 2 are 2{0}1, 4{0}1, 8{0}1, or G{0}1 in base 32, however, 2 and 81 are primes, but the families 4{0}1 and G{0}1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, H, 81, 2001), thus, base 32 has GFN remain. ** Base 243: half GFN in base 3 are 1:{121}:122, 4:{121}:122, 13:{121}:122, or 40:{121}:122 in base 243, however, 1:121:121:122, 4:121, 13, 40:121:121:121:121:121:121:121:121:121:121:121:122 are primes, thus, base 243 does not have GFN or half GFN remain. ** Base 1024: GFN in base 2 are 4:{0}:1, 16:{0}:1, 64:{0}:1, or 256:{0}:1 in base 1024, however, 64:1 is prime, but the families 4:{0}:1, 16:{0}:1, 256:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 257, 64:1), thus, base 1024 has GFN remain. * 7th powers: ** Base 128: GFN in base 2 are 2:{0}:1, 4:{0}:1, or 16:{0}:1 in base 128, however, 2 and 4:0:1 are primes, but the family 16:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 2:1, 4:0:1), thus, base 128 has GFN remain.
The smallest generalized repunit prime in base b (if exists) is always minimal prime in base b, since it is 111...111 in base b

Thus, a given base b which is not perfect power (of the form m^r with r>1) whose "minimal prime program" have generalized repunit prime remain if and only if there are no known generalized repunit prime in base b, such bases <= 1024 (perfect powers excluded) are 185, 269, 281, 380, 384, 385, 394, 452, 465, 511, 574, 601, 631, 632, 636, 711, 713, 759, 771, 795, 861, 866, 881, 938, 948, 951, 956, 963, 1005, 1015

For the bases <= 1024 which is perfect power (of the form m^r with r>1):

* Squares:

** Base 4: GRU in base 2 are 1{3} in base 4, however, 3 is prime, thus, base 4 does not have GRU remain.

** Base 9: GRU in base 3 are 1{4} in base 9, however, 14 is prime, thus, base 9 does not have GRU remain.

** Base 16: GRU in base 2 are either 1{F} or 7{F} in base 16, however, 1F and 7 are primes, thus, base 16 does not have GRU remain.

** Base 25: GRU in base 5 are 1{6} in base 25, however, 16 is prime, thus, base 25 does not have GRU remain.

** Base 36: GRU in base 6 are 1{7} in base 36, however, 7 is prime, thus, base 36 does not have GRU remain.

** Base 49: GRU in base 7 are 1:{8} in base 49, however, 1:8:8 is prime, thus, base 49 does not have GRU remain.

** Base 64: GRU in base 2 are either 1:{63} or 31:{63} in base 64, however, 1:63 and 31 are primes, thus, base 64 does not have GRU remain.

** Base 81: GRU in base 3 are either 1:{40} or 13:{40} in base 81, however, 1:40:40:40 and 13 are primes, thus, base 81 does not have GRU remain.

** Base 100: GRU in base 10 are 1:{11} in base 100, however, 11 is prime, thus, base 100 does not have GRU remain.

** Base 121: GRU in base 11 are 1:{12} in base 121, however, 1:12:12:12:12:12:12:12:12 is prime, thus, base 121 does not have GRU remain.

** Base 144: GRU in base 12 are 1:{13} in base 144, however, 13 is prime, thus, base 144 does not have GRU remain.

...

** Base 1024: GRU in base 2 are 1:{1023}, 7:{1023}, 127:{1023}, or 511:{1023} in base 1024, however, 1:1023:1023:1023, 7, 127, 511:1023 are primes, thus, base 1024 does not have GRU remain.

* Cubes:

** Base 8: GRU in base 2 are either 1{7} or 3{7} in base 8, however, 7 is prime, thus, base 8 does not have GRU remain.

** Base 27: GRU in base 3 are either 1{D} or 4{D} in base 27, however, D is prime, thus, base 27 does not have GRU remain.

** Base 64: GRU in base 2 are either 1:{63} or 31:{63} in base 64, however, 1:63 and 31 are primes, thus, base 64 does not have GRU remain.

** Base 125: GRU in base 5 are either 1:{31} or 6:{31} in base 125, however, 31 is prime, thus, base 125 does not have GRU remain.

** Base 216: GRU in base 6 are either 1:{43} or 7:{43} in base 216, however, 43 is prime, thus, base 216 does not have GRU remain.

** Base 343: GRU in base 7 are either 1:{57} or 8:{57} in base 343, however, 1:57:57:57:57 and 8:57 are primes, thus, base 343 does not have GRU remain.

** Base 512: GRU in base 2 are 1:{511}, 3:{511}, 15:{511}, 31:{511}, 127:{511}, or 255:{511} in base 512, however, 1:511:511, 3, 15:511, 31, 127, 255:511 are primes, thus, base 512 does not have GRU remain.

** Base 729: GRU in base 3 are either 1:{364} or 121:{364} in base 729, however, 1:364 and 121:364:364:364:364:364:364:364:364:364:364:364 are primes, thus, base 729 does not have GRU remain.

** Base 1000: GRU in base 10 are either 1:{111} or 11:{111} in base 1000, however, 1:111:111:111:111:111:111 and 11 are primes, thus, base 1000 does not have GRU remain.

* 5th powers:

** Base 32: GRU in base 2 are 1{V}, 3{V}, 7{V}, or F{V} in base 32, however, V is prime, thus, base 32 does not have GRU remain.

** Base 243: GRU in base 3 are 1:{121}, 4:{121}, 13:{121}, or 40:{121} in base 243, however, 1:121:121:121:121:121:121:121:121:121:121:121:121:121:121, 4:121, 13 are primes, but the family 40:{121} does not have any known (probable) prime (there are no known numbers in OEIS A028491 which is == 4 mod 5), thus, base 243 has GRU remain.

** Base 1024: GRU in base 2 are 1:{1023}, 7:{1023}, 127:{1023}, or 511:{1023} in base 1024, however, 1:1023:1023:1023, 7, 127, 511:1023 are primes, thus, base 1024 does not have GRU remain.

* 7th powers:

** Base 128: GRU in base 2 are 1:{127}, 3:{127}, 7:{127}, 15:{127}, 31:{127}, or 63:{127} in base 128, however, 127 is prime, thus, base 128 does not have GRU remain.

Last fiddled with by sweety439 on 2020-12-01 at 18:24

 2020-11-25, 08:50 #57 sweety439   Nov 2016 53148 Posts In Sierpinski problem base b, the prime for a k-value = b in base b, see problem https://mersenneforum.org/showthread.php?t=24972), then the prime for Sierpinski/Riesel problems base b for a k-value = b in base b is more interesting, since single-digit primes are trivial, like that in Sierpinski/Riesel problems base b, n=0 is trivial, since the corresponding number is just k+1 or k-1, and thus CRUS requires n>=1, and of course the CRUS Sierpinski/Riesel problems (requiring n>=1) is much harder than the same problem which n=0 is allowed, similarly, finding the minimal set of the strings for primes in base b with at least two digits in base b is much harder than finding the minimal set of the strings for primes (including the single-digit primes in base b) in base b, e.g. * In base 7, the largest minimal prime is 11111, but if single-digit primes are excluded, then a much-larger prime 33333333333333331 is minimal prime. * In base 8, the largest minimal prime is 444444441, but if single-digit primes are excluded, then a much-larger prime 7777777777771 is minimal prime. * In base 10, the largest minimal prime is 66600049, but if single-digit primes are excluded, then a much-larger prime 555555555551 is minimal prime. * In base 14, the largest minimal prime is 408349, but if single-digit primes are excluded, then a much-larger prime 4D19698 is minimal prime. * In base 17, there are only 2 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 744904 is minimal prime. * In base 21, there are only 3 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 5D0198481 is minimal prime. * In base 30, the largest minimal prime is C010221, but if single-digit primes are excluded, then a much-larger prime OT34205 is minimal prime. * In base 32, there are 78 unsolved families when searched to length 10000, but if single-digit primes are excluded, then the unsolved family S{V} is searched up to length 2000001 by CRUS with no prime found. * In base 33, there are 33 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 130236141 is minimal prime. * In base 35, there are only 15 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 1B0560611 is minimal prime. * In base 37, if single-digit primes are excluded, then the unsolved family 2K{0}1 is searched up to length 1000002 by CRUS with no prime found, also another unsolved family {I}J is searched up to length 524287 with no (probable) prime found. * In base 38, if single-digit primes are excluded, then there are four large known minimal primes 2027281, V015271, Lb1579, ab136211. * In base 42, the largest minimal prime is R4861, but if single-digit primes are excluded, then a much-larger prime 2f2523 is minimal prime. * In base 43, if single-digit primes are excluded, then the unsolved family 3b{0}1 is searched up to length 1000002 by CRUS with no prime found, also another unsolved family 2{7} is searched up to length 50001 with no (probable) prime found. * In base 48, if single-digit primes are excluded, then there is a large known minimal prime T01330411. * In base 60, if single-digit primes are excluded, then the unsolved family Z{x} is searched up to length 100001 by CRUS with no prime found. Last fiddled with by sweety439 on 2020-12-19 at 16:33
2020-11-25, 14:56   #58
sweety439

Nov 2016

22×691 Posts

Quote:
 Originally Posted by sweety439 The "minimal prime problem" is solved only in bases 2~16, 18, 20, 22~24, 30, 42, and maybe 60 Code: b, length of largest minimal prime base b, number of minimal primes base b 2, 2, 2 3, 3, 3 4, 2, 3 5, 5, 8 6, 5, 7 7, 5, 9 8, 9, 15 9, 4, 12 10, 8, 26 11, 45, 152 12, 8, 17 13, 32021, 228 14, 86, 240 15, 107, 100 16, 3545, 483 18, 33, 50 20, 449, 651 22, 764, 1242 23, 800874, 6021 24, 100, 306 30, 1024, 220 42, 4551, 487 60, ?, ? (in theory, <2000 digits)
The lower bound of the largest minimal prime in base 60 is e19371, also Q8961 is minimal prime in base 60

The values of them are 77327010984551504786304887888912950705175204580639944878112438600952757035876727229378296619277947037764123978846596061647800547824271405420610942504398032526580100809844305805544927484087907616047490338190828917065699765520511128503381872341167737600460647597875122424469309525340927891025212547061188776538264903805527424912087179786849901547205244266878177942527870184920215328514230990454933261585699343368869812084796558411721869822394527700663131350707635393027944180439815096746293426421194665978764581162587927866393205026213755969137701220074489706959966447530447995143405265533839850435707734313891577375215804642516141551699775657946569122025380740434646135054704170314178518948917457077920299428193780905089153629086443760982953552745554032630063069920652615362123725793144110637743473716888605506966189552881692154417121864981473601912302543600701367807908042289806525645841750281185651872533226665585223241511993986508736773286351668957103552353014040845431533864448327266336789760566326440423377001353690565900244559349252519469001825116007514729851712983574622341296162969774717357252465431566117676922668834197449691552002659958493980197122256612229132710589188220351409094828130859660567041139496963915457844074136483182933611723591111024630476224702575651192615747211666681896793532612116567734947534484938472185678092597966368048609549325442879516453824590523188998379435190788947006444708909975051214459423525690882137592842255587521093881402277645744154135012098764172743649344172229163389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186401 and 44237739863175496610471318629567161227581499739702326449443211342477982035718794483071631727522073459377930102398410838554672162663612371413096490082577997717588025268103015103195710515977898833005189244382338257840944719699642630344222584794826781588580542174706455627416628292660455033430459427791568859444909759999806211055982544227289834463933517584500668147475720542564765516991468231198124803963783152542228516984157676464674424474630978346931184024801441861139072461640784439697679231361092862140120023823474610674945003533686787118333313230137931070802812541939817735865901202734962214450795186055471212270838294675126791484852523312122258393734265285929307078713993139831738349121088218059932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271161

 2020-11-25, 15:14 #59 sweety439   Nov 2016 22·691 Posts For the minimal problem in base 60, I checked these families: (x is any given digit) * x:{0}:1 * x:{0}:49 (x not divisible by 7, x != 10) * {x}:1 * {x}:49 (x not divisible by 7) * x:{49} (x not divisible by 7) All these families have known proven primes, except {40}:1, which only has known strong PRP * x:{14}:49 (x not divisible by 7) * x:{21}:49 (x not divisible by 7) * x:{28}:49 (x not divisible by 7) * x:{35}:49 (x not divisible by 7) * x:{42}:49 (x not divisible by 7) Only 46:{42}:49 family has no known primes, even no strong PRPs in this family are known * {14}:x:49 (x not divisible by 7) * {21}:x:49 (x not divisible by 7) * {28}:x:49 (x not divisible by 7) * {35}:x:49 (x not divisible by 7) * {42}:x:49 (x not divisible by 7) All these families have known proven primes, except {42}:30:49, which only has known strong PRP Last fiddled with by sweety439 on 2020-11-25 at 15:30
2020-11-26, 02:23   #60
sweety439

Nov 2016

22·691 Posts

Quote:
 Originally Posted by sweety439 For the minimal problem in base 60, I checked these families: (x is any given digit) * x:{0}:1 * x:{0}:49 (x not divisible by 7, x != 10) * {x}:1 * {x}:49 (x not divisible by 7) * x:{49} (x not divisible by 7) All these families have known proven primes, except {40}:1, which only has known strong PRP * x:{14}:49 (x not divisible by 7) * x:{21}:49 (x not divisible by 7) * x:{28}:49 (x not divisible by 7) * x:{35}:49 (x not divisible by 7) * x:{42}:49 (x not divisible by 7) Only 46:{42}:49 family has no known primes, even no strong PRPs in this family are known * {14}:x:49 (x not divisible by 7) * {21}:x:49 (x not divisible by 7) * {28}:x:49 (x not divisible by 7) * {35}:x:49 (x not divisible by 7) * {42}:x:49 (x not divisible by 7) All these families have known proven primes, except {42}:30:49, which only has known strong PRP
46:{42}:49 family has trivial factor of 53, thus not need to be checked.

Also checked these families:

* 10:10:{0}:49
* 10:x:{0}:49 (x = 14, 21, 28, 35, 42, 49)
* x:10:{0}:49 (x = 14, 21, 28, 35, 42, 49)

 2020-11-26, 02:28 #61 sweety439   Nov 2016 22·691 Posts Smallest prime in given simple family in base 60: {x}:1 Code: 1,61 2,7321 3,181 4,241 5,18301 6,21961 7,421 8,379574237281 9,541 10,601 11,661 12,208167532693722559227661016949152542372881355921 13,47581 14,51241 15,3294901 16,45548908474561 17,1021 18,65881 19,15024813541 20,1201 21,276772861 22,1321 23,1381 24,316311841 25,5491501 26,44237739863175496610471318629567161227581499739702326449443211342477982035718794483071631727522073459377930102398410838554672162663612371413096490082577997717588025268103015103195710515977898833005189244382338257840944719699642630344222584794826781588580542174706455627416628292660455033430459427791568859444909759999806211055982544227289834463933517584500668147475720542564765516991468231198124803963783152542228516984157676464674424474630978346931184024801441861139072461640784439697679231361092862140120023823474610674945003533686787118333313230137931070802812541939817735865901202734962214450795186055471212270838294675126791484852523312122258393734265285929307078713993139831738349121088218059932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271161 27,1621 28,102481 29,1741 30,1801 31,1861 32,93237738291439869343927223105084745762711864406779661016949121 33,1565743728781 34,1613190508441 35,7688101 36,2161 37,2221 38,2281 39,2341 40,77327010984551504786304887888912950705175204580639944878112438600952757035876727229378296619277947037764123978846596061647800547824271405420610942504398032526580100809844305805544927484087907616047490338190828917065699765520511128503381872341167737600460647597875122424469309525340927891025212547061188776538264903805527424912087179786849901547205244266878177942527870184920215328514230990454933261585699343368869812084796558411721869822394527700663131350707635393027944180439815096746293426421194665978764581162587927866393205026213755969137701220074489706959966447530447995143405265533839850435707734313891577375215804642516141551699775657946569122025380740434646135054704170314178518948917457077920299428193780905089153629086443760982953552745554032630063069920652615362123725793144110637743473716888605506966189552881692154417121864981473601912302543600701367807908042289806525645841750281185651872533226665585223241511993986508736773286351668957103552353014040845431533864448327266336789760566326440423377001353690565900244559349252519469001825116007514729851712983574622341296162969774717357252465431566117676922668834197449691552002659958493980197122256612229132710589188220351409094828130859660567041139496963915457844074136483182933611723591111024630476224702575651192615747211666681896793532612116567734947534484938472185678092597966368048609549325442879516453824590523188998379435190788947006444708909975051214459423525690882137592842255587521093881402277645744154135012098764172743649344172229163389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186401 41,150061 42,2521 43,122412691525381 44,9665041 45,164701 46,606264361 47,172021 48,37957423681 49,10763341 50,3001 51,3061 52,3121 53,3181 54,197641 55,3301 56,3361 57,28550279937155564567041751967467111314451825663380318242711864406779661016949152542372881355932203389830508474576271186440621 58,212281 59,3541 {x}:49 Code: 1,109 2,7369 3,229 4,52718689 5,349 6,409 8,105437329 9,12329714402004875501336027803574282441328813559322033898305084745762711864406779661016989 10,131796649 11,709 12,769 13,829 15,54949 16,1009 17,1069 18,1129 19,250413589 20,1249 22,811681549016949152569 23,1429 24,1489 25,1549 26,1609 27,1669 29,1789 30,109849 31,408569509 32,119904498831584194115132745762711864406779661016949169 33,2029 34,2089 36,3028642546542661941210719954058267766581114796637317680350572474576271186440677966101694915254237288135593220338983050847457627118644067809 37,2269 38,6490719457627129 39,2389 40,146449 41,540366109 43,157429 44,2689 45,2749 46,168409 47,172069 48,6375389621369491525423729 50,3049 51,3109 52,3169 53,3229 54,197689 55,9394462372881349 57,3469 58,3529 59,46655999989 x:{49} Code: 1,109 2,611389 3,229 4,17389 5,349 6,409 8,411996203389 9,77035957924881355932203389 10,14590162042372436009914299567562900888905762711864406779661016949152542372881355932203389 11,709 12,769 13,829 15,56989 16,1009 17,1069 18,1129 19,71389 20,1249 22,82189 23,1429 24,1489 25,1549 26,1609 27,1669 29,1789 30,110989 31,6875389 32,118189 33,2029 34,2089 36,132589 37,2269 38,2384559087006591915952856949152542372881355932203389 39,2389 40,146989 41,150589 43,4451424541432606372881355932203389 44,2689 45,2749 46,606923389 47,133894812203389 48,10547389 50,3049 51,3109 52,3169 53,3229 54,197389 55,200989 57,3469 58,3529 59,215389 x:{0}:1 Code: 1,61 2,432001 3,181 4,241 5,2406149016991872132210992275783680000000000000000000000000000000000000000001 6,21601 7,421 8,62691331276800000000000001 9,541 10,601 11,661 12,43201 13,168480001 14,10886400001 15,54001 16,57601 17,1021 18,13996800001 19,20370649768045944216583302410995908998024578122182598718037950464000000000000000000000000000000000000000000000000000000000000000000000000000000001 20,1201 21,3527193600000001 22,1321 23,1381 24,5184001 25,90001 26,93601 27,1621 28,100801 29,1741 30,1801 31,1861 32,115201 33,118801 34,122401 35,126001 36,2161 37,2221 38,2281 39,2341 40,8640001 41,531360001 42,2521 43,2006208000001 44,965225828176625664000000000000000000001 45,125971200000001 46,165601 47,2192832000001 48,172801 49,176401 50,3001 51,3061 52,3121 53,3181 54,93551073780643988500363379682469478400000000000000000000000000000000000000000001 55,3301 56,3361 57,205201 58,(trivial factor of 59) 59,3541 x:{0}:49 Code: 1,109 2,93312000049 3,229 4,14449 5,349 6,409 8,6220800049 9,1944049 10,(trivial factor of 59) 11,709 12,769 13,829 15,54049 16,1009 17,1069 18,1129 19,68449 20,1249 22,61585920000049 23,1429 24,1489 25,1549 26,1609 27,1669 29,1789 30,6480049 31,6696049 32,115249 33,2029 34,2089 36,466560049 37,2269 38,136849 39,2389 40,1866240000049 41,1912896000049 43,154849 44,2689 45,2749 46,2146176000049 47,169249 48,172849 50,3049 51,3109 52,3169 53,3229 54,699840049 55,1625362428001224684562289212884750459919231127678405836800000000000000000000000000000000000000000000000000000000000000000000049 57,3469 58,3529 59,12744049
 2020-11-26, 02:35 #62 sweety439   Nov 2016 1010110011002 Posts x:{14}:49 Code: 1,109 2,8089 3,229 4,15289 5,349 6,409 8,1779289 9,33289 10,132675289 11,709 12,769 13,829 15,20055578263423416146440677966101694915289 16,1009 17,1069 18,1129 19,249315289 20,1249 22,1037502915289 23,1429 24,1489 25,1549 26,1609 27,1669 29,1789 30,6531289 31,6747289 32,116089 33,2029 34,2089 36,130489 37,2269 38,495555289 39,2389 40,144889 41,103182884390444449640082580739273165590541602171762902235022709553359196234458364272060077833460415740804281702234241751684562368942580406237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915289 43,155689 44,2689 45,2749 46,465965333694915289 47,10203289 48,37509315289 50,3049 51,3109 52,3169 53,3229 54,702915289 55,11931289 57,3469 58,3529 59,213289 x:{21}:49 Code: 1,109 2,508909 3,229 4,56452909 5,349 6,409 8,30109 9,94286240542372909 10,37309 11,709 12,769 13,829 15,42986782372909 16,1009 17,1069 18,1129 19,69709 20,1249 22,4025817357839737065999049857469767607759032979106716427631968228584180718644067796610169491525423728813559322033898305084745762711864406779661016949152542372909 23,1429 24,1489 25,1549 26,1609 27,1669 29,1789 30,66078257013152542372909 31,112909 32,6988909 33,2029 34,2089 36,101773342372909 37,2269 38,497092909 39,2389 40,31380772909 41,535972909 43,156109 44,2689 45,2749 46,166909 47,170509 48,10444909 50,3049 51,3109 52,3169 53,3229 54,195709 55,717412909 57,3469 58,3529 59,12820909 x:{28}:49 Code: 1,109 2,8929 3,229 4,57990529 5,349 6,409 8,30529 9,34129 10,2262529 11,709 12,769 13,829 15,3342529 16,1009 17,1069 18,1129 19,4206529 20,1249 22,80929 23,1429 24,1489 25,1549 26,1609 27,1669 29,1789 30,394950529 31,113329 32,116929 33,2029 34,2089 36,472710529 37,2269 38,8310529 39,2389 40,8742529 41,4212156168942609355932203389830529 43,9390529 44,2689 45,2749 46,167329 47,1041447436333870756881355932203389830529 48,13781461655186262022942372881355932203389830529 50,3049 51,3109 52,3169 53,3229 54,331946136337921041355932203389830529 55,199729 57,3469 58,3529 59,214129 x:{35}:49 Code: 1,109 2,9349 3,229 4,771484637288149 5,349 6,409 8,30949 9,34549 10,38149 11,709 12,769 13,829 15,56149 16,1009 17,1069 18,1129 19,70549 20,1249 22,81349 23,1429 24,1489 25,1549 26,1609 27,1669 29,1789 30,6608149 31,113749 32,25344488149 33,2029 34,2089 36,131749 37,2269 38,23335844534237288149 39,2389 40,526088149 41,149749 43,33898088149 44,2689 45,2749 46,10064149 47,185120325561205169675135454687984165581220276782105983361193164168670838265752820260904448577571678108045870876576322502449572547744055070802594515527926156691477915758601548938853501303980626387044701079429027352148995318212751455646534728345092572787387347410490834215458172781888350653835992601161966471095319325576754886993561238893441826145675686736477047030489460058140333352185261905102459753937730302319495540099005728377120233422356413887591971257315898743429492383226804915072909057608763313496683212160248130680520291356694770983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288149 48,10496149 50,3049 51,3109 52,3169 53,3229 54,196549 55,12008149 57,3469 58,3529 59,12872149 x:{42}:49 Code: 1,109 2,9769 3,229 4,170945053505084745769 5,349 6,409 8,1881769 9,2097769 10,38569 11,709 12,769 13,829 15,56569 16,1009 17,1069 18,1129 19,70969 20,1249 22,81769 23,1429 24,1489 25,1549 26,1609 27,1669 29,1789 30,110569 31,6849769 32,7065769 33,2029 34,2089 36,132169 37,2269 38,139369 39,2389 40,31657545769 41,150169 43,33990345769 44,2689 45,2749 46,(trivial factor of 53) 47,10305769 48,1767252099905084745769 50,3049 51,3109 52,3169 53,3229 54,11817769 55,200569 57,3469 58,3529 59,12897769 {14}:x:49 Code: 1,3074509 2,31719478566747843550804041300349830508474576271186440677966101694914569 3,11070914629 4,11070914689 5,184514749 6,11070914809 8,50929 9,50989 10,3075049 11,51109 12,51169 13,51229 15,51349 16,3075409 17,8608743701694915469 18,516524622101694915529 19,11070915589 20,184515649 22,51769 23,51829 24,664254915889 25,51949 26,52009 27,52069 29,52189 30,52249 31,39855294916309 32,52369 33,3076429 34,52489 36,52609 37,664254916669 38,30991477326101694916729 39,3076789 40,11070916849 41,664254916909 43,184517029 44,53089 45,53149 46,53690481146394350663097813232332427347712798372881355932203389830508474576271186440677966101694917209 47,53269 48,664254917329 50,86756301967596040677966101694917449 51,11070917509 52,53569 53,53629 54,3077689 55,3147493094329085095522234576271186440677966101694917749 57,30991477326101694917869 58,184517929 59,39855294917989 {21}:x:49 Code: 1,75709 2,10041238653656949152542371769 3,4611829 4,276771889 5,16606371949 6,4612009 8,76129 9,616626663337578078627630562878800705084745762711864406779661016949152542372189 10,76249 11,645936492161087054050399981653446997706215532953486454915466633416169490161247457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372309 12,76369 13,996382372429 15,4612549 16,4612609 17,4612669 18,276772729 19,4612789 20,4612849 22,4612969 23,77029 24,276773089 25,16606373149 26,4613209 27,77269 29,276773389 30,4613449 31,77509 32,77569 33,4613629 34,77689 36,16606373809 37,276773869 38,77929 39,16606373989 40,78049 41,4614109 43,78229 44,59782942374289 45,4614349 46,6071553036900241310806779661016949152542374409 47,276774469 48,61187265753757414256952240162711864406779661016949152542374529 50,78649 51,774786933152542374709 52,996382374769 53,4614829 54,78889 55,52209837304507200077039765027430616624964848906126524755206192493399488812789496523127382219681677062442951316647311186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542374949 57,4615069 58,996382375129 59,276775189 {28}:x:49 Code: 1,81583021005009885675936320216949152542372881355932203389828909 2,85460868854823834608016221386772928746969615932515587546395079909292691525423728813559322033898305084745762711864406779661016949152542372881355932203389828969 3,22141829029 4,101089 5,101149 6,101209 8,6149329 9,6149389 10,101449 11,286958123389829509 12,10410756236111524881355932203389829569 13,369029629 15,101749 16,79710589829809 17,101869 18,101929 19,1328509829989 20,6150049 22,13388318204875932203389830169 23,102229 24,6150289 25,79710589830349 26,102409 27,1328509830469 29,6150589 30,6150649 31,29828045081330194812832118462406904082062665762711864406779661016949152542372881355932203389830709 32,102769 33,102829 34,286958123389830889 36,41126317117261134141412615065804034201951786857394034478949601447152874939439946846072866224064662010793220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389831009 37,103069 38,6151129 39,1328509831189 40,369031249 41,369031309 43,286958123389831429 44,1328509831489 45,103549 46,1033049244203389831609 47,103669 48,6151729 50,1328509831849 51,286958123389831909 52,103969 53,37478722450001489572881355932203389832029 54,104089 55,104149 57,6152269 58,1328509832329 59,6152389 {35}:x:49 Code: 1,81475573154959817379255597463815552667176545024717505666213665960638224320021112459781503325113716943629003292963749951159320447728997238620350548107901686289125472897903137985503182233361374542375162900682265823294796999737443473337843435573308433456959404707058320810457306411455933006101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237286109 2,1660637286169 3,126229 4,17128518426043835517434182302188908474576271186440677966101694915254237286289 5,126349 6,36429318221401447864840677966101694915254237286409 8,77478693315254237286529 9,7686589 10,7686649 11,27677286709 12,99638237286769 13,461286829 15,126949 16,1660637287009 17,461287069 18,1660637287129 19,127189 20,127249 22,607155303690024131080677966101694915254237287369 23,131145545597045212313426440677966101694915254237287429 24,36429318221401447864840677966101694915254237287489 25,127549 26,127609 27,127669 29,27677287789 30,127849 31,358697654237287909 32,461287969 33,21521859254237288029 34,99638237288089 36,7688209 37,1660637288269 38,1660637288329 39,128389 40,128449 41,128509 43,128629 44,461288689 45,128749 46,7688809 47,358697654237288869 48,7688929 50,129049 51,7689109 52,129169 53,129229 54,129289 55,21521859254237289349 57,129469 58,129529 59,129589 {42}:x:49 Code: 1,9223309 2,293439587902707111288657562346647653394212382542384936694711075914089081641468094666645578615570550709924319586579296659981779875032195661701462202096102293874185480241052744144833349365537276799785969205297493379562404092952314178395004440542139367761173708310416661107311234222306240316209631923293822273260390016005704126405409242393725556515881932954120677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084743369 3,151429 4,260268905902788122033898305084743489 5,151549 6,151609 8,151729 9,95158435700243530652412123901049491525423728813559322033898305084743789 10,151849 11,151909 12,151969 13,152029 15,334707955121898305084744149 16,33212744209 17,9224269 18,25826231105084744329 19,152389 20,33212744449 22,1992764744569 23,152629 24,9224689 25,33212744749 26,152809 27,553544869 29,152989 30,1085381915311180600372601407525931962389847751970245597672814187895728453642389622010356871067432479240127281624918875843807895776453427504154910355073723811485480200485147288814532682450893550065346880581428503092670144866199408686377359578222051485037152838513072612496791202198960786455011981346714830632452284175840153078825137962409229301085120863398324900668527102405288924544210878811218940250587703349451751315140419049505572840115309385837985597640170169004994591035237463955094223324926699100962730596525138946332290428960176322975631221744617520009977331177155716098492037390962017969334604994823460496054237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745049 31,3452320032561365140374087785000799083572067796610169491525423728813559322033898305084745109 32,33212745169 33,1992764745229 34,9225289 36,153409 37,153469 38,153529 39,153589 40,153649 41,9225709 43,202385101230008043693559322033898305084745829 44,153889 45,153949 46,430437185084746009 47,9226069 48,1992764746129 50,553546249 51,33212746309 52,154369 53,1204948638438833898305084746429 54,95158435700243530652412123901049491525423728813559322033898305084746489 55,9226549 57,154669 58,33212746729 59,154789
 2020-11-26, 02:39 #63 sweety439   Nov 2016 ACC16 Posts {49}:x:49 Code: 1,176509 2,10760569 3,176629 4,645800689 5,1807836177355932200749 6,176809 8,8369611932200929 9,176989 10,5179663972035655860472096728181925922711864406779661016949152542372881355932201049 11,177109 12,38748201169 13,645801229 15,3370877628514757222772400494683673158596409477797247719358711849483581786873706143158543146664730075705489224200224093772041630182187652701699645946277442899767500755812009374102776457086216749247209626019900398116606709317609816539188162397141065837083072359107434141070736000398492419524277805139751989637641458276851772548616402672230694356610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932201349 16,177409 17,10761469 18,10761529 19,177589 20,10761649 22,38748201769 23,645801829 24,177889 25,177949 26,645802009 27,178069 29,30130602955932202189 30,178249 31,645802309 32,84346404690718372881355932202369 33,10762429 34,178489 36,178609 37,1093129404791710112542372881355932202669 38,10762729 39,10762789 40,390492614308881355932202849 41,178909 43,179029 44,179089 45,38748203149 46,179209 47,179269 48,409053718397842884147674224095289021756765923247261869559322033898305084745762711864406779661016949152542372881355932203329 50,645803449 51,38748203509 52,10763569 53,10763629 54,179689 55,179749 57,10763869 58,1807836177355932203929 59,179989 10:x:{0}:49 Code: 614,477446400049 621,37309 628,8138880049 635,38149 642,38569 649,140184049 x:10:{0}:49 Code: 850,183600049 1270,76249 1690,101449 2110,3571525142839296000000000000000049 2530,151849 2950,38232000049
 2020-11-26, 02:41 #64 sweety439   Nov 2016 ACC16 Posts Other possible such simple families: 10:10:{0}:49 prime is 2196049 58:58:{0}:1 prime is 212281 10:{0}:49:49 prime is 6046617600000002989 10:{0}:10:49 prime is 466560000649 58:{0}:58:1 prime is 212281 Last fiddled with by sweety439 on 2020-11-26 at 02:49
 2020-11-26, 04:18 #65 sweety439   Nov 2016 22×691 Posts 14:{0}:x:49 Code: 1,24253982091278071092686802139899494400000000000000000000000000000000000000000109 2,1009 3,1069 4,1129 5,3024349 6,1249 8,50929 9,1429 10,1489 11,1549 12,1609 13,1669 15,1789 16,5361922889755312850308759177923802244504459923744908273254400000000000000000000000000000000000000000000000000000000000000000000001009 17,3025069 18,3025129 19,2029 20,2089 22,51769 23,2269 24,10886401489 25,2389 26,52009 27,52069 29,52189 30,2689 31,2749 32,52369 33,181442029 34,52489 36,3049 37,3109 38,3169 39,3229 40,39191040002449 41,3026509 43,3469 44,3529 45,53149 46,181442809 47,3709 48,3769 50,3889 51,181443109 52,53569 53,53629 54,4129 55,(trivial factor of 59) 57,3027469 58,307117308965289984000000000000000003529 59,10886403589 21:{0}:x:49 Code: 1,75709 2,1429 3,1489 4,1549 5,1609 6,1669 8,1789 9,211631616000000589 10,76249 11,272160709 12,2029 13,2089 15,16329600949 16,2269 17,4537069 18,2389 19,4537189 20,272161249 22,12697896960000001369 23,2689 24,2749 25,2753361057228796079119709444688918393883353351941059461389077445343240031237662127438976850813717433212648483052318436843042263067280107067121663921269045680514764091347878987046902409665972186282803753885626203381672952078169757610858708358660096000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549 26,3527193600001609 27,77269 29,3049 30,3109 31,3169 32,3229 33,272162029 34,77689 36,3469 37,3529 38,77929 39,16329602389 40,3709 41,3769 43,3889 44,272162689 45,4538749 46,278553138848124030953717760000000000000000000000000002809 47,4129 48,(trivial factor of 59) 50,78649 51,12697896960000003109 52,4539169 53,979776003229 54,4549 55,58786560003349 57,4729 58,4789 59,592433080565760000000000003589 28:{0}:x:49 Code: 1,1789 2,789910774087680000000000000169 3,21772800229 4,101089 5,2029 6,2089 8,21772800529 9,2269 10,101449 11,2389 12,6048769 13,6048829 15,101749 16,2689 17,2749 18,101929 19,47394646445260800000000000001189 20,362881249 22,3049 23,3109 24,3169 25,3229 26,102409 27,78382080001669 29,3469 30,3529 31,80223303988259720914670714880000000000000000000000000000001909 32,102769 33,3709 34,3769 36,3889 37,103069 38,282175488000002329 39,6050389 40,4129 41,(trivial factor of 59) 43,1306368002629 44,2316350688374295151333383964863082569625926687057800374045900800000000000000000000000000000000000000000000000000000000000000000000000002689 45,103549 46,362882809 47,4549 48,21772802929 50,4729 51,4789 52,103969 53,4909 54,4969 55,104149 57,1039694019687845983054132464844800000000000000000000000000000000003469 58,5209 59,78382080003589 35:{0}:x:49 Code: 1,7560109 2,2269 3,126229 4,2389 5,126349 6,16456474460160000000000000409 8,453600529 9,2689 10,2749 11,5878656000000709 12,76187381760000000000769 13,97977600000829 15,3049 16,3109 17,3169 18,3229 19,127189 20,127249 22,3469 23,3529 24,27855313884812403095371776000000000000000000000000000001489 25,127549 26,3709 27,3769 29,3889 30,127849 31,7561909 32,7561969 33,4129 34,(trivial factor of 59) 36,453602209 37,1632960002269 38,7562329 39,128389 40,4549 41,128509 43,4729 44,4789 45,128749 46,4909 47,4969 48,352719360000002929 50,129049 51,5209 52,129169 53,129229 54,129289 55,5449 57,5569 58,129529 59,5689 42:{0}:x:49 Code: 1,9072109 2,2689 3,2749 4,32659200289 5,151549 6,151609 8,3049 9,3109 10,3169 11,3229 12,151969 13,152029 15,3469 16,3529 17,117573120001069 18,5614347706314368308492315310161920000000000000000000000000000000000001129 19,3709 20,3769 22,3889 23,152629 24,9073489 25,16850366041100048016273224228350264013299690448515611349014072815152914037687200443877077133470937907200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549 26,4129 27,(trivial factor of 59) 29,152989 30,5485491486720000000001849 31,32659201909 32,544321969 33,4549 34,9074089 36,4729 37,4789 38,153529 39,4909 40,4969 41,117573120002509 43,20686430901833768712610953618533187671699305261361528832000000000000000000000000000000000000000000000000000000000000000002629 44,5209 45,153949 46,544322809 47,544322869 48,5449 50,5569 51,387215843042271258003015621585831529981559389785592810438298620409934449687415027238102244809934838667668586191368584982641890866197562403890778944989683725107200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003109 52,5689 53,5749 54,32659203289 55,5869 57,154669 58,1959552003529 59,154789 49:{0}:x:49 Code: 1,3049 2,3109 3,3169 4,3229 5,3379480093071544116029035238523182050306352376786936240751182230865067894959768623789993478122963368981956666059054838206787747840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000349 6,176809 8,3469 9,3529 10,10584649 11,177109 12,3709 13,3769 15,3889 16,177409 17,137168640001069 18,140390781979454511600673751040000000000000000000000000000001129 19,4129 20,(trivial factor of 59) 22,635041369 23,38102401429 24,177889 25,177949 26,4549 27,178069 29,4729 30,4789 31,10585909 32,4909 33,4969 34,178489 36,178609 37,5209 38,635042329 39,1382343854653440000000000002389 40,10586449 41,5449 43,5569 44,179089 45,5689 46,5749 47,179269 48,5869 50,137168640003049 51,29628426240000003109 52,106662334464000000003169 53,635043229 54,6229 55,179749 57,10587469 58,6469 59,6529
 2020-11-26, 04:25 #66 sweety439   Nov 2016 22·691 Posts

 Similar Threads Thread Thread Starter Forum Replies Last Post Bob Underwood Math 12 2020-10-11 20:01 philmoore Five or Bust - The Dual Sierpinski Problem 388 2019-03-01 04:30 carpetpool Information & Answers 9 2018-02-24 21:41 Unregistered Homework Help 6 2012-10-31 14:16 Cyclamen Persicum Math 1 2004-01-30 15:11

All times are UTC. The time now is 11:20.

Mon Jan 25 11:20:23 UTC 2021 up 53 days, 7:31, 0 users, load averages: 2.00, 1.84, 1.92