![]() |
![]() |
#1 |
Jul 2014
Montenegro
328 Posts |
![]()
Conjecture
Let Let Maxima Implementations LL Test Code:
p:9689; (s:4,M:2^p-1, for i from 1 thru (p-2) do (s:mod(s^2-2,M)))$ (if(s=0) then print("prime") else print("composite")); Code:
p:9689; (s:4,M:2^p-1, for i from 1 thru (p-2)/3 do (s:mod(s^8-8*s^6+20*s^4-16*s^2+2,M)))$ (if(s=0) then print("prime") else print("composite")); Maybe someone on this forum can prove or disprove this conjecture . |
![]() |
![]() |
![]() |
#2 | |
Jun 2003
22×32×151 Posts |
![]() Quote:
EDIT:- Code:
LL1(p)={my(s=Mod(4,2^p-1)); for(i=1,p-2, s=s^2-2); s==0} LL2(p)={my(s=Mod(4,2^p-1)); for(i=1,(p-2)/3, s=s^8-8*s^6+20*s^4-16*s^2+2); s==0} LL3(p)={my(s=Mod(4,2^p-1)); for(i=1,(p-2)/3, s=((s^2-2)^2-2)^2-2); s==0} LL1(9689) time = 1,280 ms. LL2(9689) time = 3,511 ms. LL3(9689) time = 1,276 ms. Last fiddled with by axn on 2014-10-12 at 09:31 |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Lucasian Pseudoprimality Hypothesis for Specific Class of k 2^n-1 | primus | Miscellaneous Math | 14 | 2015-07-04 15:42 |
Pseudoprimality Hypothesis for Specific Class of Generalized Fermat Numbers | primus | Miscellaneous Math | 1 | 2015-03-25 22:18 |
Disproven Primality Test for Specific Class of kb^n-1 | primus | Computer Science & Computational Number Theory | 8 | 2014-08-21 15:16 |
Conjectured Primality Test for Specific Class of k6^n-1 | primus | Computer Science & Computational Number Theory | 16 | 2014-08-15 01:15 |
Conjectured Primality Test for 2^p-1, (2^p+1)/3 and (2^2^n+1) | T.Rex | Math | 75 | 2007-09-04 07:53 |