mersenneforum.org A Sierpinski/Riesel-like problem
 Register FAQ Search Today's Posts Mark Forums Read

 2020-06-27, 07:08 #837 sweety439     Nov 2016 236610 Posts For such (k,b) pair, k is Sierpinski number base b: Code: k b covering set = 5, 7 mod 12 = 11 mod 12 {2, 3} = 4, 11 mod 15 = 14 mod 15 {3, 5} = 9, 11 mod 20 = 19 mod 20 {2, 5} = 8, 13 mod 21 = 20 mod 21 {3, 7} = 7, 11 mod 24 = 5 mod 24 {2, 3} = 13, 15 mod 28 = 27 mod 28 {2, 7} = 10, 23 mod 33 = 32 mod 33 {3, 11} = 6, 29 mod 35 = 34 mod 35 {5, 7} = 14, 25 mod 39 = 38 mod 39 {3, 13} = 19, 31 mod 40 = 29 mod 40 {2, 5} = 15, 27 mod 56 = 13 mod 56 {2, 7} = 31, 39 mod 80 = 9 mod 80 {2, 5} = 23, 43 mod 88 = 21 mod 88 {2, 11} = 31, 47 mod 96 = 17 mod 96 {2, 3} = 12, 131 mod 143 = 142 mod 143 {11, 13} = 39, 75 mod 152 = 37 mod 152 {2, 19} = 47, 79, 83, 181 mod 195 = 8, 122 mod 195 {3, 5, 13} = 79, 103 mod 208 = 25 mod 208 {2, 13}
 2020-06-28, 06:34 #838 sweety439     Nov 2016 1001001111102 Posts
 2020-06-28, 06:39 #839 sweety439     Nov 2016 2·7·132 Posts For such (k,b) pair, k is Riesel number base b: Code: k b covering set = 5, 7 mod 12 = 11 mod 12 {2, 3} = 4, 11 mod 15 = 14 mod 15 {3, 5} = 9, 11 mod 20 = 19 mod 20 {2, 5} = 8, 13 mod 21 = 20 mod 21 {3, 7} = 13, 17 mod 24 = 5 mod 24 {2, 3} = 13, 15 mod 28 = 27 mod 28 {2, 7} = 10, 23 mod 33 = 32 mod 33 {3, 11} = 6, 29 mod 35 = 34 mod 35 {5, 7} = 14, 25 mod 39 = 38 mod 39 {3, 13} = 9, 21 mod 40 = 29 mod 40 {2, 5} = 29, 41 mod 56 = 13 mod 56 {2, 7} = 41, 49 mod 80 = 9 mod 80 {2, 5} = 45, 65 mod 88 = 21 mod 88 {2, 11} = 49, 65 mod 96 = 17 mod 96 {2, 3} = 12, 131 mod 143 = 142 mod 143 {11, 13} = 77, 113 mod 152 = 37 mod 152 {2, 19} = 14, 112, 116, 148 mod 195 = 8, 122 mod 195 {3, 5, 13} = 105, 129 mod 208 = 25 mod 208 {2, 13}
 2020-06-30, 04:53 #840 sweety439     Nov 2016 2·7·132 Posts Multiples of the base (MOB) are NOT excluded from the conjectures. They are excluded from the TESTING of the conjectures if and only if (k+-1)/gcd(k+-1,b-1) (+ for Sierpinski, - for Riesel) is not prime. Previously they were shown as being excluded from the conjectures. That is, if k=4*b is eliminated because it is a MOB and k=4 has algebraic factors to make a full covering set, which of the two takes priority for k=4*b since it would also have algebraic factors to make a full covering set? The answer is algebraic factors take priority because k=4 cannot ever have a prime and so k=4*b must still be accounted for. SO: k=4*b has to be shown with algebraic factors because it too cannot ever have a prime. This is certainly mathematical pickiness but to account for all k's, you can't just say a k is eliminated from the conjecture because it is a MOB and (k+-1)/gcd(k+-1,b-1) (+ for Sierpinski, - for Riesel) is not prime. The k still remains; it's just not shown as remaining or tested because k/b should eventually (or already has) yield the same prime. But if k/b can never have a prime than you must account for k.
2020-06-30, 07:28   #841
sweety439

Nov 2016

2×7×132 Posts

Update the file of the first 3 conjectures to include these (probable) primes:

1037*12^6281-1 (see post #466)

563*12^4020+1 (see post #462)

(3356*10^4584+1)/9 (see post #471)

(846*12^1384+1)/11 (see post #655)

1057*12^690+1 and 1052*12^5715+1 (see post #665)
Attached Files
 1st, 2nd, and 3rd conjectures.zip (79.2 KB, 5 views)

Last fiddled with by sweety439 on 2020-06-30 at 07:45

 2020-06-30, 07:44 #842 sweety439     Nov 2016 44768 Posts Also the test limit: R12 k=1132: n=21760 (see https://mersenneforum.org/showpost.p...&postcount=664) S10 k=1343 and 2573: n=15000 (see https://mersenneforum.org/showpost.p...&postcount=473) S12 k = 885, 911, 976, 1041: n=25000 (see https://mersenneforum.org/showpost.p...&postcount=665)
2020-07-01, 03:59   #843
sweety439

Nov 2016

2×7×132 Posts

Upload the zip file of the first 4 Sierpinski/Riesel conjectures, see https://github.com/xayahrainie4793/f...el-conjectures
Attached Files
 first-4-Sierpinski-Riesel-conjectures-master.zip (127.9 KB, 5 views)

 2020-07-02, 14:26 #844 sweety439     Nov 2016 2×7×132 Posts (9216*96^3341-1)/gcd(9216-1,96-1) = (96^3343-1)/95 is (probable) prime k=9216 eliminated from R96 Newest status of Riesel problems
 2020-07-03, 01:10 #845 sweety439     Nov 2016 2×7×132 Posts See https://github.com/xayahrainie4793/f...el-conjectures for the status of the 1st, 2nd, 3rd, and 4th Sierpinski/Riesel problems. Code: base: conjectured first 16 Sierpinski k 2: 78557, 157114, 271129, 271577, 314228, 322523, 327739, 482719, 542258, 543154, 575041, 603713, 628456, 645046, 655478, 903983, 3: 11047, 23789, 27221, 32549, 33141, 40247, 47969, 66869, 67747, 70381, 70667, 71367, 78283, 79141, 81241, 81663, 4: 419, 659, 794, 1466, 1676, 1769, 2246, 2414, 2609, 2636, 2651, 2981, 3176, 3734, 4514, 4889, 5: 7, 11, 31, 35, 55, 59, 79, 83, 103, 107, 127, 131, 151, 155, 175, 179, 6: 174308, 188299, 243417, 282001, 464437, 702703, 715175, 1045848, 1100966, 1128499, 1129794, 1161910, 1293662, 1434861, 1446213, 1460502, 7: 209, 1463, 3305, 3533, 3827, 5927, 7703, 9461, 9683, 10241, 10658, 10781, 12077, 12463, 12643, 14243, 8: 47, 79, 83, 181, 242, 274, 278, 376, 437, 469, 473, 571, 632, 664, 668, 766, 9: 31, 39, 111, 119, 191, 199, 271, 279, 351, 359, 431, 439, 511, 519, 591, 599, 10: 989, 1121, 3653, 3662, 8207, 9175, 9351, 9593, 9890, 10313, 11177, 11210, 12221, 13355, 14849, 16028, 11: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 12: 521, 597, 1143, 1509, 2406, 2482, 3028, 3394, 4291, 4367, 4913, 5279, 6176, 6252, 6798, 7164, 13: 15, 27, 47, 71, 83, 127, 132, 139, 183, 195, 239, 251, 293, 295, 307, 351, 14: 4, 11, 19, 26, 34, 41, 49, 56, 64, 71, 79, 86, 94, 101, 109, 116, 15: 673029, 2105431, 2692337, 4621459, 16: 38, 194, 524, 608, 647, 719, 857, 1013, 1343, 1427, 1466, 1538, 1676, 1832, 2162, 2246, 17: 31, 47, 127, 143, 223, 239, 278, 302, 319, 335, 349, 376, 415, 431, 447, 511, 18: 398, 512, 571, 989, 1633, 1747, 1806, 2224, 2868, 2982, 3041, 3459, 4103, 4217, 4276, 4694, 19: 9, 11, 29, 31, 49, 51, 69, 71, 89, 91, 109, 111, 129, 131, 149, 151, 20: 8, 13, 29, 34, 50, 55, 71, 76, 92, 97, 113, 118, 134, 139, 155, 160, 21: 23, 43, 47, 111, 131, 199, 219, 287, 307, 339, 375, 395, 463, 483, 551, 571, 22: 2253, 4946, 6694, 8417, 13408, 13868, 16101, 17849, 19572, 24563, 27256, 29004, 30727, 35718, 38411, 40159, 23: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 83, 89, 24: 30651, 66356, 77554, 84766, 176011, 199531, 260859, 268071, 295404, 372619, 427004, 534301, 539519, 547019, 583651, 606191, 25: 79, 103, 185, 287, 311, 398, 495, 519, 584, 703, 719, 727, 911, 929, 935, 1119, 26: 221, 284, 1627, 1766, 1804, 2543, 3223, 3394, 4525, 4673, 5290, 5357, 5636, 5746, 6079, 6449, 27: 13, 15, 41, 43, 69, 71, 97, 99, 125, 127, 153, 155, 181, 183, 209, 211, 28: 4554, 8293, 13687, 18996, 27319, 31058, 36452, 41761, 50084, 53823, 59217, 64526, 72849, 76588, 81982, 87291, 29: 4, 7, 11, 19, 26, 31, 34, 35, 41, 49, 55, 56, 59, 64, 71, 79, 30: 867, 9859, 10386, 10570, 11066, 13236, 15902, 16460, 18973, 21174, 22818, 25297, 25497, 26010, 28705, 28955, 31: 239, 293, 521, 1025, 1227, 1405, 1481, 1659, 1787, 2621, 2729, 3011, 3151, 3203, 3329, 3405, 32: 10, 23, 43, 56, 76, 89, 109, 122, 124, 142, 155, 175, 188, 208, 221, 241, Code: base: conjectured first 16 Riesel k 2: 509203, 762701, 777149, 790841, 992077, 1018406, 1106681, 1247173, 1254341, 1330207, 1330319, 1525402, 1554298, 1581682, 1715053, 1730653, 3: 12119, 20731, 21997, 28297, 30871, 33437, 35213, 36357, 51197, 51619, 53719, 54577, 61493, 62193, 62479, 65113, 4: 361, 919, 1114, 1444, 1486, 1681, 1849, 2326, 2419, 2629, 3301, 3676, 4456, 5014, 5209, 5539, 5: 13, 17, 37, 41, 61, 65, 85, 89, 109, 113, 133, 137, 157, 161, 181, 185, 6: 84687, 133946, 176602, 213410, 299144, 333845, 367256, 429127, 435940, 508122, 607935, 803676, 819925, 1059612, 1214450, 1250446, 7: 457, 1291, 3199, 3313, 3355, 3697, 4681, 5251, 5935, 6277, 9037, 11259, 12133, 13231, 13453, 14251, 8: 14, 112, 116, 148, 209, 307, 311, 343, 404, 502, 506, 538, 599, 658, 697, 701, 9: 41, 49, 74, 121, 129, 201, 209, 281, 289, 361, 369, 441, 449, 521, 529, 601, 10: 334, 1585, 1882, 3340, 3664, 7327, 8425, 9208, 10176, 10999, 12178, 12211, 13672, 15751, 15850, 17137, 11: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 12: 376, 742, 1288, 1364, 2261, 2627, 3173, 3249, 4146, 4512, 5058, 5134, 6031, 6397, 6943, 7019, 13: 29, 41, 69, 85, 97, 101, 141, 153, 197, 209, 217, 253, 265, 302, 309, 321, 14: 4, 11, 19, 26, 34, 41, 49, 56, 64, 71, 79, 86, 94, 101, 109, 116, 15: 622403, 1346041, 2742963, 16: 100, 172, 211, 295, 625, 781, 919, 991, 1030, 1114, 1156, 1444, 1600, 1738, 1810, 1849, 17: 49, 59, 65, 86, 133, 145, 157, 161, 241, 257, 337, 353, 433, 449, 494, 521, 18: 246, 664, 723, 837, 1481, 1899, 1958, 2072, 2716, 3134, 3193, 3307, 3951, 4369, 4428, 4542, 19: 9, 11, 29, 31, 49, 51, 69, 71, 89, 91, 109, 111, 129, 131, 149, 151, 20: 8, 13, 29, 34, 50, 55, 71, 76, 92, 97, 113, 118, 134, 139, 155, 160, 21: 45, 65, 133, 153, 221, 241, 309, 329, 397, 417, 485, 489, 505, 560, 573, 593, 22: 2738, 4461, 6209, 8902, 13893, 14374, 15616, 17364, 20057, 25048, 26771, 28519, 31212, 36203, 37926, 39674, 23: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 24: 32336, 69691, 109054, 124031, 135249, 140169, 177909, 196551, 213356, 215804, 217586, 326721, 335411, 360601, 386444, 406321, 25: 105, 129, 211, 313, 337, 521, 545, 729, 753, 937, 961, 1024, 1145, 1169, 1201, 1234, 26: 149, 334, 1892, 1987, 2572, 2785, 3874, 4339, 4376, 4552, 4985, 5027, 5492, 5920, 6143, 6733, 27: 13, 15, 41, 43, 69, 71, 97, 99, 125, 127, 153, 155, 173, 181, 183, 209, 28: 3769, 9078, 14472, 18211, 26534, 31843, 37237, 40976, 49299, 54608, 60002, 63741, 72064, 77373, 82767, 86506, 29: 4, 9, 11, 13, 17, 19, 21, 26, 34, 37, 41, 49, 56, 61, 64, 65, 30: 4928, 5331, 7968, 8958, 10014, 10518, 11471, 13497, 13757, 13763, 17361, 18072, 19163, 22408, 23685, 24119, 31: 145, 265, 443, 493, 519, 601, 697, 919, 1255, 1585, 2059, 2167, 2189, 2367, 2443, 2621, 32: 10, 23, 43, 56, 73, 76, 89, 109, 122, 142, 155, 175, 188, 208, 221, 241,
2020-07-03, 01:57   #846
sweety439

Nov 2016

44768 Posts

Quote:
 Originally Posted by sweety439 See https://github.com/xayahrainie4793/f...el-conjectures for the status of the 1st, 2nd, 3rd, and 4th Sierpinski/Riesel problems. Code: base: conjectured first 16 Sierpinski k 2: 78557, 157114, 271129, 271577, 314228, 322523, 327739, 482719, 542258, 543154, 575041, 603713, 628456, 645046, 655478, 903983, 3: 11047, 23789, 27221, 32549, 33141, 40247, 47969, 66869, 67747, 70381, 70667, 71367, 78283, 79141, 81241, 81663, 4: 419, 659, 794, 1466, 1676, 1769, 2246, 2414, 2609, 2636, 2651, 2981, 3176, 3734, 4514, 4889, 5: 7, 11, 31, 35, 55, 59, 79, 83, 103, 107, 127, 131, 151, 155, 175, 179, 6: 174308, 188299, 243417, 282001, 464437, 702703, 715175, 1045848, 1100966, 1128499, 1129794, 1161910, 1293662, 1434861, 1446213, 1460502, 7: 209, 1463, 3305, 3533, 3827, 5927, 7703, 9461, 9683, 10241, 10658, 10781, 12077, 12463, 12643, 14243, 8: 47, 79, 83, 181, 242, 274, 278, 376, 437, 469, 473, 571, 632, 664, 668, 766, 9: 31, 39, 111, 119, 191, 199, 271, 279, 351, 359, 431, 439, 511, 519, 591, 599, 10: 989, 1121, 3653, 3662, 8207, 9175, 9351, 9593, 9890, 10313, 11177, 11210, 12221, 13355, 14849, 16028, 11: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 12: 521, 597, 1143, 1509, 2406, 2482, 3028, 3394, 4291, 4367, 4913, 5279, 6176, 6252, 6798, 7164, 13: 15, 27, 47, 71, 83, 127, 132, 139, 183, 195, 239, 251, 293, 295, 307, 351, 14: 4, 11, 19, 26, 34, 41, 49, 56, 64, 71, 79, 86, 94, 101, 109, 116, 15: 673029, 2105431, 2692337, 4621459, 16: 38, 194, 524, 608, 647, 719, 857, 1013, 1343, 1427, 1466, 1538, 1676, 1832, 2162, 2246, 17: 31, 47, 127, 143, 223, 239, 278, 302, 319, 335, 349, 376, 415, 431, 447, 511, 18: 398, 512, 571, 989, 1633, 1747, 1806, 2224, 2868, 2982, 3041, 3459, 4103, 4217, 4276, 4694, 19: 9, 11, 29, 31, 49, 51, 69, 71, 89, 91, 109, 111, 129, 131, 149, 151, 20: 8, 13, 29, 34, 50, 55, 71, 76, 92, 97, 113, 118, 134, 139, 155, 160, 21: 23, 43, 47, 111, 131, 199, 219, 287, 307, 339, 375, 395, 463, 483, 551, 571, 22: 2253, 4946, 6694, 8417, 13408, 13868, 16101, 17849, 19572, 24563, 27256, 29004, 30727, 35718, 38411, 40159, 23: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 83, 89, 24: 30651, 66356, 77554, 84766, 176011, 199531, 260859, 268071, 295404, 372619, 427004, 534301, 539519, 547019, 583651, 606191, 25: 79, 103, 185, 287, 311, 398, 495, 519, 584, 703, 719, 727, 911, 929, 935, 1119, 26: 221, 284, 1627, 1766, 1804, 2543, 3223, 3394, 4525, 4673, 5290, 5357, 5636, 5746, 6079, 6449, 27: 13, 15, 41, 43, 69, 71, 97, 99, 125, 127, 153, 155, 181, 183, 209, 211, 28: 4554, 8293, 13687, 18996, 27319, 31058, 36452, 41761, 50084, 53823, 59217, 64526, 72849, 76588, 81982, 87291, 29: 4, 7, 11, 19, 26, 31, 34, 35, 41, 49, 55, 56, 59, 64, 71, 79, 30: 867, 9859, 10386, 10570, 11066, 13236, 15902, 16460, 18973, 21174, 22818, 25297, 25497, 26010, 28705, 28955, 31: 239, 293, 521, 1025, 1227, 1405, 1481, 1659, 1787, 2621, 2729, 3011, 3151, 3203, 3329, 3405, 32: 10, 23, 43, 56, 76, 89, 109, 122, 124, 142, 155, 175, 188, 208, 221, 241, Code: base: conjectured first 16 Riesel k 2: 509203, 762701, 777149, 790841, 992077, 1018406, 1106681, 1247173, 1254341, 1330207, 1330319, 1525402, 1554298, 1581682, 1715053, 1730653, 3: 12119, 20731, 21997, 28297, 30871, 33437, 35213, 36357, 51197, 51619, 53719, 54577, 61493, 62193, 62479, 65113, 4: 361, 919, 1114, 1444, 1486, 1681, 1849, 2326, 2419, 2629, 3301, 3676, 4456, 5014, 5209, 5539, 5: 13, 17, 37, 41, 61, 65, 85, 89, 109, 113, 133, 137, 157, 161, 181, 185, 6: 84687, 133946, 176602, 213410, 299144, 333845, 367256, 429127, 435940, 508122, 607935, 803676, 819925, 1059612, 1214450, 1250446, 7: 457, 1291, 3199, 3313, 3355, 3697, 4681, 5251, 5935, 6277, 9037, 11259, 12133, 13231, 13453, 14251, 8: 14, 112, 116, 148, 209, 307, 311, 343, 404, 502, 506, 538, 599, 658, 697, 701, 9: 41, 49, 74, 121, 129, 201, 209, 281, 289, 361, 369, 441, 449, 521, 529, 601, 10: 334, 1585, 1882, 3340, 3664, 7327, 8425, 9208, 10176, 10999, 12178, 12211, 13672, 15751, 15850, 17137, 11: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 12: 376, 742, 1288, 1364, 2261, 2627, 3173, 3249, 4146, 4512, 5058, 5134, 6031, 6397, 6943, 7019, 13: 29, 41, 69, 85, 97, 101, 141, 153, 197, 209, 217, 253, 265, 302, 309, 321, 14: 4, 11, 19, 26, 34, 41, 49, 56, 64, 71, 79, 86, 94, 101, 109, 116, 15: 622403, 1346041, 2742963, 16: 100, 172, 211, 295, 625, 781, 919, 991, 1030, 1114, 1156, 1444, 1600, 1738, 1810, 1849, 17: 49, 59, 65, 86, 133, 145, 157, 161, 241, 257, 337, 353, 433, 449, 494, 521, 18: 246, 664, 723, 837, 1481, 1899, 1958, 2072, 2716, 3134, 3193, 3307, 3951, 4369, 4428, 4542, 19: 9, 11, 29, 31, 49, 51, 69, 71, 89, 91, 109, 111, 129, 131, 149, 151, 20: 8, 13, 29, 34, 50, 55, 71, 76, 92, 97, 113, 118, 134, 139, 155, 160, 21: 45, 65, 133, 153, 221, 241, 309, 329, 397, 417, 485, 489, 505, 560, 573, 593, 22: 2738, 4461, 6209, 8902, 13893, 14374, 15616, 17364, 20057, 25048, 26771, 28519, 31212, 36203, 37926, 39674, 23: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 24: 32336, 69691, 109054, 124031, 135249, 140169, 177909, 196551, 213356, 215804, 217586, 326721, 335411, 360601, 386444, 406321, 25: 105, 129, 211, 313, 337, 521, 545, 729, 753, 937, 961, 1024, 1145, 1169, 1201, 1234, 26: 149, 334, 1892, 1987, 2572, 2785, 3874, 4339, 4376, 4552, 4985, 5027, 5492, 5920, 6143, 6733, 27: 13, 15, 41, 43, 69, 71, 97, 99, 125, 127, 153, 155, 173, 181, 183, 209, 28: 3769, 9078, 14472, 18211, 26534, 31843, 37237, 40976, 49299, 54608, 60002, 63741, 72064, 77373, 82767, 86506, 29: 4, 9, 11, 13, 17, 19, 21, 26, 34, 37, 41, 49, 56, 61, 64, 65, 30: 4928, 5331, 7968, 8958, 10014, 10518, 11471, 13497, 13757, 13763, 17361, 18072, 19163, 22408, 23685, 24119, 31: 145, 265, 443, 493, 519, 601, 697, 919, 1255, 1585, 2059, 2167, 2189, 2367, 2443, 2621, 32: 10, 23, 43, 56, 73, 76, 89, 109, 122, 142, 155, 175, 188, 208, 221, 241,
Remain k's: (less than the 4th CK) (at n=3000)

R4: 1159, 1189
R5: (none)
R7: (31 k's)
R8: (none)
R9: (none)
R10: 2452
R11: (none)
R12: 1132
R13: (none)
R14: (none)
R16: (none)
R17: (none)
R18: 533, 597
R19: (none)
R20: (none)
R21: (none)
R23: (none)
R25: 181, 235
R26: (41 k's)
R27: (none)
R29: (none)
R31: (20 k's)
R32: 29
R33: 257, 339, 817, 851, 951, 1123, 1240
R34: (none)
R35: (none)
R37: 33, 81, 149
R38: 44
R39: (none)
R41: (none)
R43: 13, 55
R44: (none)
R45: 197, 257
R47: (none)
R49: 82
R50: 37, 68
R51: (none)
R53: (none)
R54: 45
R55: (none)
R56: 43
R57: 281
R59: (none)
R61: 37, 53, 100, 139, 165, 229, 313, 353, 365, 389, 421
R62: 22, 26
R64: (none)
R128: 46
R256: 191, 261, 286

S4: 1238, 1286
S5: (none)
S7: (34 k's)
S8: (none)
S9: (none)
S10: 100, 269, (1000), 1343, 2573, (2690)
S11: (none)
S12: 12, (144), 885, 911, 976, 1041, 1433, 1468
S13: (none)
S14: (none)
S16: 89
S17: 53
S18: 18, (324), 607, 761, 873, 922, 983
S19: (none)
S20: (none)
S21: (none)
S23: (none)
S25: 71, 181, 222
S26: (39 k's)
S27: 33
S29: (none)
S31: (45 k's)
S32: 4, 16
S33: 67, 203, 1207, 1317, 1439, 1531, 1563, 1597
S34: (none)
S35: (none)
S37: 37, 63, 94, 127, 134, 171
S38: 1, (38)
S39: (none)
S41: (none)
S43: 37, 56
S44: (none)
S45: 139, 217
S47: (none)
S49: (none)
S50: 1, (50)
S51: 38
S53: 4, 17, 19
S54: (none)
S55: 1, 36
S56: 46
S57: 117, 207
S59: (none)
S61: 119, 127, 155, 164, 230, 249, 262, 324, 340, 342, 353, 359, 368
S62: 1, 27
S64: (none)
S128: 16, 40, 47, 83, 88, 94, 122
S256: 89, 116, 215, 230, 281, 329, 383, 398, 407, 434, 459, 504

(k's with "()" are the k's excluded from testing (these k's are still included in the conjectures), i.e. k's that are multiples of base (b) and where (k+-1)/gcd(k+-1,b-1) (+ for Sierpinski, - for Riesel) is not prime)

Last fiddled with by sweety439 on 2020-07-04 at 15:37

2020-07-03, 03:19   #847
sweety439

Nov 2016

93E16 Posts

Quote:
 Originally Posted by sweety439 Remain k's: (less than the 4th CK) (at n=3000) R4: 1159, 1189 R5: (none) R7: (31 k's) R8: (none) R9: (none) R10: 2452 R11: (none) R12: 1132 R13: (none) R14: (none) R16: (none) R17: (none) R18: 533, 597 R19: (none) R20: (none) R21: (none) R23: (none) R25: 181, 235 R26: (41 k's) R27: (none) R29: (none) R31: (20 k's) R32: 29 R33: 257, 339, 817, 851, 951, 1123, 1240 R34: (none) R35: (none) R37: 33, 81, 149 R38: 44 R39: (none) R41: (none) R43: 13, 55 R44: (none) R45: 197, 257 R47: (none) R49: 82 R50: 37, 68 R51: (none) R53: (none) R54: 45 R55: (none) R56: 43 R57: 281 R59: (none) R61: 37, 53, 100, 139, 165, 229, 313, 353, 365, 389, 421 R62: 22, 26 R64: (none) R128: 46 R256: 191, 261, 286 S4: 1238, 1286 S5: (none) S7: (34 k's) S8: (none) S9: (none) S10: 100, 269, (1000), 1343, 2573, (2690) S11: (none) S12: 12, (144), 885, 911, 976, 1041, 1433, 1468 S13: (none) S14: (none) S16: 89 S17: 53 S18: 18, (324), 607, 761, 873, 922, 983 S19: (none) S20: (none) S21: (none) S23: (none) S25: 71, 181, 222 S26: (39 k's) S27: 33 S29: (none) S31: (45 k's) S32: 4, 16 S33: 67, 203, 1207, 1317, 1439, 1531, 1563, 1597 S34: (none) S35: (none) S37: 37, 63, 94, 127, 134, 171 S38: 1, (38) S39: (none) S41: (none) S43: 37, 56 S44: (none) S45: 139, 217 S47: (none) S49: (none) S50: 1, (50) S51: 38 S53: 4, 17, 19 S54: (none) S55: 1, 36 S56: 46 S57: 117, 207 S59: (none) S61: 119, 127, 155, 164, 230, 249, 262, 324, 340, 342, 353, 359, 368 S62: 1, 27 S64: (none) S128: 16, 40, 47, 83, 88, 94, 122 S256: 89, 116, 215, 230, 281, 329, 383, 398, 407, 434, 459, 504
Reserve some 1k bases (S17, S27, S51, S56, R38, R54)

 Similar Threads Thread Thread Starter Forum Replies Last Post sweety439 sweety439 11 2020-09-23 01:42 sweety439 sweety439 20 2020-07-03 17:22 sweety439 sweety439 12 2017-12-01 21:56 robert44444uk Conjectures 'R Us 139 2007-12-17 05:17 rogue Conjectures 'R Us 11 2007-12-17 05:08

All times are UTC. The time now is 05:51.

Wed Oct 28 05:51:12 UTC 2020 up 48 days, 3:02, 2 users, load averages: 1.58, 1.64, 1.66