mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > And now for something completely different

Reply
 
Thread Tools
Old 2022-05-19, 00:46   #100
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

112×13 Posts
Default

Quote:
Originally Posted by frmky View Post
Looks like mpich. Did you install it through the package manager? If you did install it that way and don't have anything else relying on it, I recommend

Code:
sudo apt remove mpich
sudo apt install openmpi-bin libopenmpi-dev
Then do a full configure, make, and trial run.
With a newer gcc-10.3.0 using that it is worked, thank you all! Of course quickly proved that 1k, with a 4k:
Code:
gerbicz@gerbicz-MS-7972:~/cmexp3/cm-0.4.1dev/src$ mpirun ecpp-mpi -v -g -n '10^3999+4771' -c -f cert-4000
MPI with 3 workers initialised, of which 3 are local.
GMP: include 6.1.2, lib 6.1.2
MPFR: include 4.1.0, lib 4.1.0
MPC: include 1.2.1, lib 1.2.1
MPFRCX: include 0.6.3, lib 0.6.3
PARI: include 2.11.1, lib 2.11.1
Could not open file 'cert-4000.cert1' for reading.
Writing to 'cert-4000.cert1'.
-- Time for class numbers up to Dmax=44122804: 31.5 (10.5)
  ***   Warning:   ***   Warning: increasing stack size to 16777216.
  ***   Warning: increasing stack size to 16777216.
increasing stack size to 16777216.
  ***   Warning: increasing stack size to 33554432.
  ***   Warning: increasing stack size to 33554432.
  ***   Warning: increasing stack size to 33554432.
  ***   Warning: increasing stack size to 67108864.
  ***   Warning: increasing stack size to 67108864.
  ***   Warning: increasing stack size to 67108864.
-- Time for primorial of B=285893500: 11.9 (4.0)
-- hmaxprime: 29
-- Size [0]: 13285 bits
   Time for discriminant -35378335: 156.0 ( 56.3)
   largest prime of d: 523
   largest prime of h: 5
       discriminants: 6.4 (6.4)
      156 qroot:      45.5 (15.2)
    42229 Cornacchia: 37.8 (12.7)
      826 trial div:  7.9 (2.0)
      198 is_prime:   58.4 (19.9)
-- Size [1]: 13245 bits
   Time for discriminant   -36487:  69.9 ( 23.4)
   largest prime of d: 107
   largest prime of h: 19
       discriminants: 6.5 (6.5)
      189 qroot:      55.2 (18.8)
    58122 Cornacchia: 52.5 (17.7)
     1550 trial div:  15.5 (3.9)
      327 is_prime:   96.2 (32.9)
-- Size [2]: 13198 bits
R. Gerbicz is offline   Reply With Quote
Old 2022-05-19, 10:13   #101
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

22×1,063 Posts
Default

Quote:
Originally Posted by paulunderwood View Post
The attached code can be compiled with GWNUM (after that has compiled from P95 source) in the P95 directory

Then make the change to lib/nt.c of CM (FastECCP code):

Code:
int cm_nt_is_prime (mpz_t a) {
   char str[60000];
   if ( mpz_sizeinbase (a, 2) < 26000 ) { // is 26000 optimal?
      return (mpz_probab_prime_p(a, 0)>0);
   }
   strcpy (str, "/home/paul/Downloads/p95/gw_prp "); // note the space
   strcat (str, mpz_get_str(NULL, 10, a));
   return (system(str));
}
Obviously you'll need your own path for gw_prp!!! I have not tried this on a cluster, but I guess you put the program in the mpi directories.

Note: running this code messes up CM's internal clock -- better to prefix the command with time to get wall time.

I am pretty sure it would be way better if the code was internal to CM instead of making use of system().

Check the sanity of the code!
I can't impress enough the usefulness of this hack. The threshold of ~26000 bits is optimal. At 44497 bits it is 30% quicker. Considering most of the time is spent at larger bit levels the hack could more than double the speed for a number of say 25k digits.

I just measured a ~25k digits (85349 bits) from "Size [0]" to "Size [2]" with a decrease in time from 39:49 minutes to 24:56 minutes -- about 60% speed up.

There is an error in the gw_prp.c attachment for the Lucas sequence: It should be LEN = bitlen(n) - 1; The fact that "-1" is missing is of no consequence because 2^2-2 == 2 and 2*a-a == a. Fix at will.

Last fiddled with by paulunderwood on 2022-05-19 at 15:49 Reason: Adjusted timing because I can no longer subtract in my head
paulunderwood is offline   Reply With Quote
Old 2022-05-19, 17:44   #102
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

14158 Posts
Default

So when will R86453 be verified?
mart_r is offline   Reply With Quote
Old 2022-05-19, 17:57   #103
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

10000100111002 Posts
Default

Quote:
Originally Posted by mart_r View Post
So when will R86453 be verified?
I'd say 4-5 months on 1024 cores with my above hack.

You'd need to increase the char array size!

Last fiddled with by paulunderwood on 2022-05-19 at 19:39
paulunderwood is offline   Reply With Quote
Old 2022-05-19, 19:04   #104
xilman
Bamboozled!
 
xilman's Avatar
 
"๐’‰บ๐’ŒŒ๐’‡ท๐’†ท๐’€ญ"
May 2003
Down not across

262378 Posts
Default

Quote:
Originally Posted by paulunderwood View Post
I'd say 4-5 months on 1024 cores with my above hack.
Looking forward to it!

Should be possible to run this as an internet-wide project ...

Paul (another one)
xilman is offline   Reply With Quote
Old 2022-05-20, 15:00   #105
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

425210 Posts
Default FastECPP + GWNUM Version 2

I have made a number of changes gw_prp.c (attached):
  • mpz strings are now base 16 for the system call to gw_prp
  • added bound check for A in the calculation on the discriminant D
  • used mpz instead of giants for loops and bit tests
  • moved squareness test to after Fermat PRP test
Important: Correspondingly the hack to lib/nt.c is:

Code:
int cm_nt_is_prime (mpz_t a) {
   char str[100000];
   if ( mpz_sizeinbase (a, 2) < 26000 ) {
      return (mpz_probab_prime_p(a, 0)>0);
   }
   strcpy(str, "/home/paul/Downloads/p95/gw_prp "); // note space in the string
   strcat(str, mpz_get_str(NULL, 16, a));
   return (system(str));
}
You have to set your own path(s) in the hack!!
Attached Files
File Type: c gw_prp.c (2.5 KB, 25 views)

Last fiddled with by paulunderwood on 2022-05-20 at 15:45 Reason: mistake in mpz_sizeinbase function fixed
paulunderwood is offline   Reply With Quote
Old 2022-05-20, 15:34   #106
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

112×13 Posts
Default

Btw what the current code is doing is already an overshoot, though not that much, in nt.c:
Code:
int cm_nt_is_prime (mpz_t a)

{
   return (mpz_probab_prime_p (a, 0) > 0);
}
Because with that you are duplicating a trial division work (up to a lower bound), because before any powmod the gmp is doing a trial division, so in this place the correct way is to write:
return (mpz_millerrabin (a, 0) > 0);
In fact from (guessing) version 6.2.1 it will do also a strong Lucas test (if one Rabin is successful), but that is not a big deal.
And for earlier versions it is doing one Fermat test with base=210 and not a Rabin test when you call with reps=0, quite misleading function names.
R. Gerbicz is offline   Reply With Quote
Old 2022-05-21, 05:20   #107
frmky
 
frmky's Avatar
 
Jul 2003
So Cal

3·811 Posts
Default

I just had a run get stuck on a step working on
Code:
4531639080398409751543102363189210388561295739200059409910002128575879252044372470939639130654350326809619032283785951586667387162556159204470579280744080394770890890761473771702543341439843057839826042990380807774508826009131637007652600491990466142433996980974323868098960737037896754715628102593258096889250744996238063221331826027855816847178793210167104445792399367511466532548311414602294560863760971492747974889601679134607098927856534139146483993036519910583866176699606432451853619574790556323312696202240176503206191578852139722404586854472882888806638928537427019319392169942640664860879956345641246729029562532138359067067475376974748018453703989853202504033842036148898616226552340101465681768544445443239531999858918142314754785070542302912380125531156244188333022442991985226521312767374521617458074355151671993903061624116932585399962540714874574427249951911749844492128142426856039845656578936590910507574356941257061866243438004403224888089528464418018356968445936885349836556144352941138571557156324653576756759422854642549990921625045611411271919609544526107817222502304182759843723618551214351334361897051055844779217713615178208700433054571358747242171870095969204375769532644236534449137323917909594775304087677280421269270904981804978139095907874260485520995787003847512902995782659304806205215250358093419792365927829525877406332945521158000436864735696528985392842020903845827862464508425162703530860344537477519478688213176843046504931396200997115318870119664195406545604690770058440451543480798165952453581393965419871079827182540821119978100930442937939098851735861688733759546152809562474492659982997835918085469449979745844614650825260719308601079350348591661624078523589217166568564723520158275861748192972807405294407239342204427663492997159383699981868436753212463669947230694063881294624361727650889541599556065453929874147030593058249859422933854014012989689059731156056132516786141299857987489998068338747575377033139788452182728091593342531289581087404905091256536271436694767902850686560754365166694481862297003779755695671517825294888679381856046471911594811517116940834394198732253389484558953311348035669007858071981527044025496257518346059994758249300423620370126102158291850570902667997164072469033717080464640521057468505871718602796530241878359840588094295036902643001150332638846035623515327510239448015239505638893227312180189519908719574544293020674390377186896185612716902783900385724821390236986294472894900219606413139005144076270134686777442692065202574239841582117145086032262723646362894456274005808079705450174019771232274256790851851928055471674912481731678407646202696430164341781721168551059826510824950886543610054951614489607826042271048678256091267216609542197979354533897922678974790701911386968321628378874664480148813300027496875465894376042149830526297638550279173707434374060706514139708013819115981417274798377935462892788375515423788137610472034389645002068655939022305251457330317989204902087414673982275016098797660538069467846965733793534316440143218731784537099006938039010330941843480620889715403351270932067112090309003467319663675973487168801128468956772332385072245292138739149085327102838758235182810520291872791107631482129107360072782551782009320471697569573146868781303451667205956545529273248647690936032085520351172132482441908819460157406515293509994056735198049768784067475087457330689012768215688672033334645124573127953038584457642240573326540295929534131438283944552354851512008966001872304220576881538430897471263845694474208622839851028910727982243299519680701392199375310502797108212790619915473429876842501892923937782930696325443849289793566624152128351656913804771950413050328748207400671298323366232597322594833501268797244089504678194835447966715520904099473450927985951541405274046330384881882942680423296825500780429280513298290289328393718535790474088819620335604900638205940950514707899690344101238397757519010170474031049596685181701583491234192451590769044059269692357481812950614099502106475976871555261406856631931798318348563068026520032044703511020971870644407882731896991998768082110652773444838042980972830044670501801932827974811647190758425568321439165256513590980329123726221834268222485834384676842468801433788068357874972965485208139094176790922685588073735578405944865244704702835253175110012024866260642584709534947340408721479595217206018897796096373336196269610109926524640754067974081425773219058823520766365129688041121422428838144461554110799206502075709220893746977161345162423979031596047844983606065917330547035850608646821930592142602584583291962323570191395828428889808884623013369708706374390697450456701310207916193810869457977774714425944042805235497512887409268475349046348919048941231857006847019336572139393777007405843043934859561516060492795490227228740920985651439970678002757811431703015394416895375850058189878847117279383027719464381920060208880043329742210713598592869392221454356408239858719515716327704023997649117857864127989952523091287603240721927667894817582634925748917141632924541848276476003182514953969083868112521841026591117257338818474067334324039814008911332088247085781153958096853260024496479302998524507223621402584294098095405939259309614481054075854040821259441510883395447630591237798075891573305447770849880858132969008505400193167599849394766365496368883496780155125664524421810988503917713816389605347902040814982573546389428517874745033553259042771964871551706832642300030633320734664885973945236610519115081651909246495531905014422561669332198908167531915986865937022953434951773520450955999890787813055835031121207723214557964601103402791655137888379890916992364108869213138060695061068996740241893970818605203135178649161226611148329513094357771672636873358979307035207658700694326742633604130891968940619549462440082866229195370336246246473726583453459420328131541000801564893397229396129048943270333686520053607084589766503186672808737096819664053791575351962162034554148108513285370280436401078162304112269026712578887184946700032185049228586254227194244799127532029196539796340525614248117365287030452916839410024394675046473012214345826012068926755475162674992399689501903188621423319815287205825131009156947519894356027726711446297582948394073481515403245547729810516718216324522816273766059411264513993450313955511881841000081787202763894312078377606630608421944452430311778253907207353549044053261584286598642098513618760065980928554289442257467897186927443536744723414259155925105724416244692943695407148396808474558594129441864289503220725876871883346816360278839431959336987729840573499536714199954381179462768467251100471386587402276937939593598066884490146716757243242283707043357895706163585751028064582072885692551591732530531072488587734488059673836499937894471700638601648902823504954266878892309961725393319465931719776299859305937711807559081906510981076461180550816799512356235276137912623533166664012733566151326798924681706091017263196572885466438907128708507159746567963942381162692858282208112977626447398214294510359855573772112846291214724761201822625743224541244808106200734063310080394690191548213650168670849413215835976605590214184886192575353204592242491215166506204135104058991353224011364669315290185894789135883516939321468047245281139496074325166007697353949284170977198579274374331060505552569304201796233402340211878940021756329612345439978344907417904007037310519467332092804175269811710393869116430791265987373432957257060737347844528111182976191802085995201534261455185640247762597912240822517922053257774212087816934045453023603530511498370347688154981219586586409777596677690227874101863590482775459337133016676537473631901115855421580407635365941421514676286153652186953461220420082244407205925361649448371146651115484169202506321448244002911018642315667075526387675288823743594109510146606337792232736405694851288765526407880041290765271485948770374378531364121913727237405241051546994637690354136434916201170279508177402878967979825558794214128131592770650303638575440208004888955869715652669564210406270544948409574925895276367600192839111042446754353151438184546369285260362542607238050417863760753093159063401752768569697454132056223685112590668857709818380213693832482951595408716170844769008507482906898333084789787647331038485754021710472411849007451757200686548929284394336876898141060111388645761284080110136736280716710796806601508582136581089164946176950957816752679644382393487799003256209431862694716126958411988819544364006577695490353202169624849957688152882420385860176457637097990915618103004217229273615534585172180148831178752760086865641788690557103572322906154095711801952057393624134973086680083189513670170916982355498212353946157598192686295169141898764528320388769588530867677146695295364244704697127209395593315132361093486203018210747860428053039585775458346949554172385903922792000399791975606338324184041035043221618611561894022167788383011897499815526148331383818979695062537242994793246102183968119370913260124190568618728865710964279952333546609746096434625404825390998966277515156887792505727662353353356074353273467634693577419564967031870975478688303462803830945548349978752951053128884424930949527903144337172840010016701407174408603676606475867605486087359569450402750019393603249806481295118893343690673921885426241700554914665716642518709352253109231841868983806889360539821845058112602415558178215929772898392775133759511251399428575611045288588514793923559008897727714669661549466303835861063659925512729474536190295122132947656224965440002507148995413657930072526738476678427753025047663431970899155369645681505740714271529518794865467878882166388812273469302559180066629767710046022769351395307605888007802551526133662358624100817411514274207901714626910359073631413518231641683947274108410846844451139246206438143138448648767433225133931924453074526308062891837902871935962247917647093424338703577571194521434455071965175140903075835490044258342085428044386196439257092361707999290926218405679215732704020682288357381858863106649283867081587917024915621727848812712783424969941603924350676645495251747438846886129112690896091303091562065563576827221221644841598888693888161243146624013286245031816014476794229986900153963196468926141495095085260307217003523452267037461123708537716666487929853680110809670059222485191613520894517476785663148234847145717058248797221681760627133234855040167530038311965716462325916997170169590993647722582580142435153682264462095464116169482909727280134108961728996784928255849780105397766526061954455088994441605471691616465732184344985471547226520475957449473163680486699650428547793806026828451739451182123971174033138800340952961894876277554281630408853691531194706485454041246860641160551685191696071231946377881433633906417609805674365704843218277787661473814303062725702565581430074456972968698082400161418289935016311215868848445004967721578071943223245812360596161392358544275335338725907501165295968647655560891362258977366151364549241410357995771229847613457889425350672323620323970076453719520164395833622910432261438237619358327810942457659046290842871939459043008715083112207360179361612289550199293141897552864268497093535839284109358833406764847222341513401896085429264555196728123081415044627773511382142009571017971318230406565750163291014108162659037510539157889764419246905230436879750091332084382632286245235015901348747366971241583075910376678645571232600690528644727502948031219631626431778198976155225136980119277806633767660041394695031478153109172580431805793663909341228631119527399519334497471569798236322458319759321526733191261397178675493343221787736608531114274193384672825942213234252132497736581797078783919712511721124844495205744158298024872895221091955838075035261550557832432688756595709577919297797685558780558442442625992138797881994750454282139846278114304942556380285254958676426835928892750345910729942390077572591651503212427407011736972084986580282291259081369716000378685961723280831422724926996221780413640284821905969267863827671677031282004655023489117478159996645383224454049398218096599840748703424553596229384216608556124839175007389463983561688488671991209325894381566312780198269452302734205794677616140842635308072540903665417773445911173881420995259036082038329444411236109326955889789646921072587662473062797758295441464235831371167496658170256711301908116951760749283741116943671410780759632135012744172903494987543272092424615523276727444301913525230282377170088028883677782998961662986234305575904758091757063951641437078603186536124979044248426163402858039629140859654013275591548674271436725204303450614019121585450048760229779985296406000579164665361673758135984669759816548901508619367352776523398928165777874786120779605873312061634844179846135738800248588491467605904622028854885666346108444855045801960863580886242640837722545065157824897709939625792227438561729270848192693831162566711545882557296147532534726542649011428602050036000076814616183991234626860196016442116906586592211968207526767766484117733236154868941810846632036408328449303842326532244068439599373524080840563182586185152539754430675271626774088070624226167281737883510514458826063645451960666504530212969125576217266234912565310460734681263582622404401177067909932903457166967462593906503105041946271051783492471858584222052023578809784819938903250202836890147321219095262756352985407188891512092022283782208477
After a few hours, it stopped with the message
Code:
***** Error: cm_nt_next_prime called with an argument
that is too large for the precomputed list.
frmky is offline   Reply With Quote
Old 2022-05-21, 06:11   #108
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

22×1,063 Posts
Default

Quote:
Originally Posted by frmky View Post
I just had a run get stuck on a step working on
Code:
4531639080398409751543102363189210388561295739200059409910002128575879252044372470939639130654350326809619032283785951586667387162556159204470579280744080394770890890761473771702543341439843057839826042990380807774508826009131637007652600491990466142433996980974323868098960737037896754715628102593258096889250744996238063221331826027855816847178793210167104445792399367511466532548311414602294560863760971492747974889601679134607098927856534139146483993036519910583866176699606432451853619574790556323312696202240176503206191578852139722404586854472882888806638928537427019319392169942640664860879956345641246729029562532138359067067475376974748018453703989853202504033842036148898616226552340101465681768544445443239531999858918142314754785070542302912380125531156244188333022442991985226521312767374521617458074355151671993903061624116932585399962540714874574427249951911749844492128142426856039845656578936590910507574356941257061866243438004403224888089528464418018356968445936885349836556144352941138571557156324653576756759422854642549990921625045611411271919609544526107817222502304182759843723618551214351334361897051055844779217713615178208700433054571358747242171870095969204375769532644236534449137323917909594775304087677280421269270904981804978139095907874260485520995787003847512902995782659304806205215250358093419792365927829525877406332945521158000436864735696528985392842020903845827862464508425162703530860344537477519478688213176843046504931396200997115318870119664195406545604690770058440451543480798165952453581393965419871079827182540821119978100930442937939098851735861688733759546152809562474492659982997835918085469449979745844614650825260719308601079350348591661624078523589217166568564723520158275861748192972807405294407239342204427663492997159383699981868436753212463669947230694063881294624361727650889541599556065453929874147030593058249859422933854014012989689059731156056132516786141299857987489998068338747575377033139788452182728091593342531289581087404905091256536271436694767902850686560754365166694481862297003779755695671517825294888679381856046471911594811517116940834394198732253389484558953311348035669007858071981527044025496257518346059994758249300423620370126102158291850570902667997164072469033717080464640521057468505871718602796530241878359840588094295036902643001150332638846035623515327510239448015239505638893227312180189519908719574544293020674390377186896185612716902783900385724821390236986294472894900219606413139005144076270134686777442692065202574239841582117145086032262723646362894456274005808079705450174019771232274256790851851928055471674912481731678407646202696430164341781721168551059826510824950886543610054951614489607826042271048678256091267216609542197979354533897922678974790701911386968321628378874664480148813300027496875465894376042149830526297638550279173707434374060706514139708013819115981417274798377935462892788375515423788137610472034389645002068655939022305251457330317989204902087414673982275016098797660538069467846965733793534316440143218731784537099006938039010330941843480620889715403351270932067112090309003467319663675973487168801128468956772332385072245292138739149085327102838758235182810520291872791107631482129107360072782551782009320471697569573146868781303451667205956545529273248647690936032085520351172132482441908819460157406515293509994056735198049768784067475087457330689012768215688672033334645124573127953038584457642240573326540295929534131438283944552354851512008966001872304220576881538430897471263845694474208622839851028910727982243299519680701392199375310502797108212790619915473429876842501892923937782930696325443849289793566624152128351656913804771950413050328748207400671298323366232597322594833501268797244089504678194835447966715520904099473450927985951541405274046330384881882942680423296825500780429280513298290289328393718535790474088819620335604900638205940950514707899690344101238397757519010170474031049596685181701583491234192451590769044059269692357481812950614099502106475976871555261406856631931798318348563068026520032044703511020971870644407882731896991998768082110652773444838042980972830044670501801932827974811647190758425568321439165256513590980329123726221834268222485834384676842468801433788068357874972965485208139094176790922685588073735578405944865244704702835253175110012024866260642584709534947340408721479595217206018897796096373336196269610109926524640754067974081425773219058823520766365129688041121422428838144461554110799206502075709220893746977161345162423979031596047844983606065917330547035850608646821930592142602584583291962323570191395828428889808884623013369708706374390697450456701310207916193810869457977774714425944042805235497512887409268475349046348919048941231857006847019336572139393777007405843043934859561516060492795490227228740920985651439970678002757811431703015394416895375850058189878847117279383027719464381920060208880043329742210713598592869392221454356408239858719515716327704023997649117857864127989952523091287603240721927667894817582634925748917141632924541848276476003182514953969083868112521841026591117257338818474067334324039814008911332088247085781153958096853260024496479302998524507223621402584294098095405939259309614481054075854040821259441510883395447630591237798075891573305447770849880858132969008505400193167599849394766365496368883496780155125664524421810988503917713816389605347902040814982573546389428517874745033553259042771964871551706832642300030633320734664885973945236610519115081651909246495531905014422561669332198908167531915986865937022953434951773520450955999890787813055835031121207723214557964601103402791655137888379890916992364108869213138060695061068996740241893970818605203135178649161226611148329513094357771672636873358979307035207658700694326742633604130891968940619549462440082866229195370336246246473726583453459420328131541000801564893397229396129048943270333686520053607084589766503186672808737096819664053791575351962162034554148108513285370280436401078162304112269026712578887184946700032185049228586254227194244799127532029196539796340525614248117365287030452916839410024394675046473012214345826012068926755475162674992399689501903188621423319815287205825131009156947519894356027726711446297582948394073481515403245547729810516718216324522816273766059411264513993450313955511881841000081787202763894312078377606630608421944452430311778253907207353549044053261584286598642098513618760065980928554289442257467897186927443536744723414259155925105724416244692943695407148396808474558594129441864289503220725876871883346816360278839431959336987729840573499536714199954381179462768467251100471386587402276937939593598066884490146716757243242283707043357895706163585751028064582072885692551591732530531072488587734488059673836499937894471700638601648902823504954266878892309961725393319465931719776299859305937711807559081906510981076461180550816799512356235276137912623533166664012733566151326798924681706091017263196572885466438907128708507159746567963942381162692858282208112977626447398214294510359855573772112846291214724761201822625743224541244808106200734063310080394690191548213650168670849413215835976605590214184886192575353204592242491215166506204135104058991353224011364669315290185894789135883516939321468047245281139496074325166007697353949284170977198579274374331060505552569304201796233402340211878940021756329612345439978344907417904007037310519467332092804175269811710393869116430791265987373432957257060737347844528111182976191802085995201534261455185640247762597912240822517922053257774212087816934045453023603530511498370347688154981219586586409777596677690227874101863590482775459337133016676537473631901115855421580407635365941421514676286153652186953461220420082244407205925361649448371146651115484169202506321448244002911018642315667075526387675288823743594109510146606337792232736405694851288765526407880041290765271485948770374378531364121913727237405241051546994637690354136434916201170279508177402878967979825558794214128131592770650303638575440208004888955869715652669564210406270544948409574925895276367600192839111042446754353151438184546369285260362542607238050417863760753093159063401752768569697454132056223685112590668857709818380213693832482951595408716170844769008507482906898333084789787647331038485754021710472411849007451757200686548929284394336876898141060111388645761284080110136736280716710796806601508582136581089164946176950957816752679644382393487799003256209431862694716126958411988819544364006577695490353202169624849957688152882420385860176457637097990915618103004217229273615534585172180148831178752760086865641788690557103572322906154095711801952057393624134973086680083189513670170916982355498212353946157598192686295169141898764528320388769588530867677146695295364244704697127209395593315132361093486203018210747860428053039585775458346949554172385903922792000399791975606338324184041035043221618611561894022167788383011897499815526148331383818979695062537242994793246102183968119370913260124190568618728865710964279952333546609746096434625404825390998966277515156887792505727662353353356074353273467634693577419564967031870975478688303462803830945548349978752951053128884424930949527903144337172840010016701407174408603676606475867605486087359569450402750019393603249806481295118893343690673921885426241700554914665716642518709352253109231841868983806889360539821845058112602415558178215929772898392775133759511251399428575611045288588514793923559008897727714669661549466303835861063659925512729474536190295122132947656224965440002507148995413657930072526738476678427753025047663431970899155369645681505740714271529518794865467878882166388812273469302559180066629767710046022769351395307605888007802551526133662358624100817411514274207901714626910359073631413518231641683947274108410846844451139246206438143138448648767433225133931924453074526308062891837902871935962247917647093424338703577571194521434455071965175140903075835490044258342085428044386196439257092361707999290926218405679215732704020682288357381858863106649283867081587917024915621727848812712783424969941603924350676645495251747438846886129112690896091303091562065563576827221221644841598888693888161243146624013286245031816014476794229986900153963196468926141495095085260307217003523452267037461123708537716666487929853680110809670059222485191613520894517476785663148234847145717058248797221681760627133234855040167530038311965716462325916997170169590993647722582580142435153682264462095464116169482909727280134108961728996784928255849780105397766526061954455088994441605471691616465732184344985471547226520475957449473163680486699650428547793806026828451739451182123971174033138800340952961894876277554281630408853691531194706485454041246860641160551685191696071231946377881433633906417609805674365704843218277787661473814303062725702565581430074456972968698082400161418289935016311215868848445004967721578071943223245812360596161392358544275335338725907501165295968647655560891362258977366151364549241410357995771229847613457889425350672323620323970076453719520164395833622910432261438237619358327810942457659046290842871939459043008715083112207360179361612289550199293141897552864268497093535839284109358833406764847222341513401896085429264555196728123081415044627773511382142009571017971318230406565750163291014108162659037510539157889764419246905230436879750091332084382632286245235015901348747366971241583075910376678645571232600690528644727502948031219631626431778198976155225136980119277806633767660041394695031478153109172580431805793663909341228631119527399519334497471569798236322458319759321526733191261397178675493343221787736608531114274193384672825942213234252132497736581797078783919712511721124844495205744158298024872895221091955838075035261550557832432688756595709577919297797685558780558442442625992138797881994750454282139846278114304942556380285254958676426835928892750345910729942390077572591651503212427407011736972084986580282291259081369716000378685961723280831422724926996221780413640284821905969267863827671677031282004655023489117478159996645383224454049398218096599840748703424553596229384216608556124839175007389463983561688488671991209325894381566312780198269452302734205794677616140842635308072540903665417773445911173881420995259036082038329444411236109326955889789646921072587662473062797758295441464235831371167496658170256711301908116951760749283741116943671410780759632135012744172903494987543272092424615523276727444301913525230282377170088028883677782998961662986234305575904758091757063951641437078603186536124979044248426163402858039629140859654013275591548674271436725204303450614019121585450048760229779985296406000579164665361673758135984669759816548901508619367352776523398928165777874786120779605873312061634844179846135738800248588491467605904622028854885666346108444855045801960863580886242640837722545065157824897709939625792227438561729270848192693831162566711545882557296147532534726542649011428602050036000076814616183991234626860196016442116906586592211968207526767766484117733236154868941810846632036408328449303842326532244068439599373524080840563182586185152539754430675271626774088070624226167281737883510514458826063645451960666504530212969125576217266234912565310460734681263582622404401177067909932903457166967462593906503105041946271051783492471858584222052023578809784819938903250202836890147321219095262756352985407188891512092022283782208477
After a few hours, it stopped with the message
Code:
***** Error: cm_nt_next_prime called with an argument
that is too large for the precomputed list.
Have you tried recompiling the code in the cm_nt_next_prime function within lib/nt.c with:

Code:
#ifdef WITH_MPI
//   static unsigned long int P [664579];
//      /* primes up to 10^7 */
   static unsigned long int P [5761455];
      /* primes up to 10^8 */
#else
   static unsigned long int P [9592];
      /* primes up to 10^5 */
#endif

Last fiddled with by paulunderwood on 2022-05-21 at 06:16
paulunderwood is offline   Reply With Quote
Old 2022-05-21, 09:35   #109
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

11·71 Posts
Default

Quote:
Originally Posted by paulunderwood View Post
I'd say 4-5 months on 1024 cores with my above hack.
Awesome!

Quote:
Originally Posted by sweety439 View Post
When will 8*13^32020+183 [...] be verified?
That should be doable in about a week or two on a reasonably fast PC.

I'm pondering testing a couple of numbers once the program is easy enough for me to use. I'm really lost when it comes to compiling like the way it's being discussed here.
mart_r is offline   Reply With Quote
Old 2022-05-21, 10:24   #110
xilman
Bamboozled!
 
xilman's Avatar
 
"๐’‰บ๐’ŒŒ๐’‡ท๐’†ท๐’€ญ"
May 2003
Down not across

11,423 Posts
Default

Quote:
Originally Posted by mart_r View Post
I'm really lost when it comes to compiling like the way it's being discussed here.
That is readily fixable. All it needs is practice. I'm sure that a number of people here will help you to learn.
xilman is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
For which types of primes is GPU primality test software available? bur GPU Computing 6 2020-08-28 06:20
Fastest software for Mersenne primality test? JonathanM Information & Answers 25 2020-06-16 02:47
APR-CL as primality proof f1pokerspeed FactorDB 14 2014-01-09 21:06
Proof of Primality Test for Fermat Numbers princeps Math 15 2012-04-02 21:49
PRIMALITY PROOF for Wagstaff numbers! AntonVrba Math 96 2009-02-25 10:37

All times are UTC. The time now is 11:36.


Thu Aug 11 11:36:24 UTC 2022 up 35 days, 6:23, 2 users, load averages: 1.89, 1.42, 1.24

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

โ‰  ยฑ โˆ“ รท ร— ยท โˆ’ โˆš โ€ฐ โŠ— โŠ• โŠ– โŠ˜ โŠ™ โ‰ค โ‰ฅ โ‰ฆ โ‰ง โ‰จ โ‰ฉ โ‰บ โ‰ป โ‰ผ โ‰ฝ โŠ โŠ โŠ‘ โŠ’ ยฒ ยณ ยฐ
โˆ  โˆŸ ยฐ โ‰… ~ โ€– โŸ‚ โซ›
โ‰ก โ‰œ โ‰ˆ โˆ โˆž โ‰ช โ‰ซ โŒŠโŒ‹ โŒˆโŒ‰ โˆ˜ โˆ โˆ โˆ‘ โˆง โˆจ โˆฉ โˆช โจ€ โŠ• โŠ— ๐–• ๐–– ๐–— โŠฒ โŠณ
โˆ… โˆ– โˆ โ†ฆ โ†ฃ โˆฉ โˆช โŠ† โŠ‚ โŠ„ โŠŠ โŠ‡ โŠƒ โŠ… โŠ‹ โŠ– โˆˆ โˆ‰ โˆ‹ โˆŒ โ„• โ„ค โ„š โ„ โ„‚ โ„ต โ„ถ โ„ท โ„ธ ๐“Ÿ
ยฌ โˆจ โˆง โŠ• โ†’ โ† โ‡’ โ‡ โ‡” โˆ€ โˆƒ โˆ„ โˆด โˆต โŠค โŠฅ โŠข โŠจ โซค โŠฃ โ€ฆ โ‹ฏ โ‹ฎ โ‹ฐ โ‹ฑ
โˆซ โˆฌ โˆญ โˆฎ โˆฏ โˆฐ โˆ‡ โˆ† ฮด โˆ‚ โ„ฑ โ„’ โ„“
๐›ข๐›ผ ๐›ฃ๐›ฝ ๐›ค๐›พ ๐›ฅ๐›ฟ ๐›ฆ๐œ€๐œ– ๐›ง๐œ ๐›จ๐œ‚ ๐›ฉ๐œƒ๐œ— ๐›ช๐œ„ ๐›ซ๐œ… ๐›ฌ๐œ† ๐›ญ๐œ‡ ๐›ฎ๐œˆ ๐›ฏ๐œ‰ ๐›ฐ๐œŠ ๐›ฑ๐œ‹ ๐›ฒ๐œŒ ๐›ด๐œŽ๐œ ๐›ต๐œ ๐›ถ๐œ ๐›ท๐œ™๐œ‘ ๐›ธ๐œ’ ๐›น๐œ“ ๐›บ๐œ”