mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > Twin Prime Search

Reply
 
Thread Tools
Old 2007-10-22, 02:08   #23
sghodeif
 
Sep 2005

2×32 Posts
Default

Quote:
Originally Posted by gd_barnes View Post
Excellent! My goal with all of this is to have the most complete and accurate list of Riesel-Proth twin primes anywhere on the web. The more information, the merrier!


Gary

Did u think to find twin primes as big as we want by finding a general formula ????

I wish all the best for u and all mathematicians .

Sghodeif ,

Last fiddled with by sghodeif on 2007-10-22 at 02:12 Reason: mistak
sghodeif is offline   Reply With Quote
Old 2007-11-05, 21:20   #24
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

23×3×52×17 Posts
Default

No general formula that I am aware of for primes of any kind. That's what prime-searchers everywhere are hoping to find!


G
gd_barnes is offline   Reply With Quote
Old 2007-11-05, 21:35   #25
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

23×3×52×17 Posts
Default

My Riesel/Proth twin search for k<1M is now up to n=23.5K. See the aforemention web pages for all of the twins found. I'll most likely put a 2nd core on this in the near future. It's getting quite a bit slower past n=20K.


Gary
gd_barnes is offline   Reply With Quote
Old 2007-11-17, 13:59   #26
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

3·54 Posts
Default

Gosh this is a major piece of work. GL in your search!!!!
robert44444uk is offline   Reply With Quote
Old 2007-11-19, 05:38   #27
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

23·3·52·17 Posts
Default Tks & another side effort

Quote:
Originally Posted by robert44444uk View Post
Gosh this is a major piece of work. GL in your search!!!!
Thanks, Robert. I'll be hitting n=25K here on core 1 in the next couple of days. Sieving is now up to n=35K and LLRing is speeding up with the addition of a 2nd core to the effort. (Core 2 has tested n=25K-25.6K so far.) We're only averaging about 3 twins for each n=1K range now for k < 1M and the last twin for k < 100K was at n=22312. I expect plenty more but they're thinning out rapidly.

I now update the web page about twice for every n=1K range that I test.

You might be interested in another 'side effort' that I have going on. I have a web page now for all known primes of the form k*10^n-1 where k < 10M at gbarnes017.googlepages.com/primes-kx10n-1.htm.

The page is intended for k's of all sizes and I do have several extremely high-weight k's > 10M listed but there are still many primes > 10M from the top-5000 site that aren't on there yet.

I thought you might be interested in the page because Jens Andersen and Axn1 have been battling it out for the k with the most primes and we've got some very large highly prolific k's now! I know how you like super-large super-high-weight k's. The testing is being coordinated in the Riesel Prime Search project here at this thread: mersenneforum.org/showthread.php?t=9578. Come over and try to beat our top record of 56 primes on a 20-digit k!


Gary

Last fiddled with by gd_barnes on 2007-11-19 at 05:45
gd_barnes is offline   Reply With Quote
Old 2007-11-22, 06:02   #28
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

23×3×52×17 Posts
Default

The "all-twin" search for k < 1M is now up to n=25.6K. See the web pages in this thread.


Gary
gd_barnes is offline   Reply With Quote
Old 2007-12-27, 04:34   #29
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

23·3·52·17 Posts
Default

The "all-twin" search for k < 1M is now complete to n=30K. They are all shown at:
http://gbarnes017.googlepages.com/twins100K.htm
http://gbarnes017.googlepages.com/twins1M.htm

Here are some statistics for n=20K-30K:

1 twin for k < 10K:
7485*2^20023+/-1

2 twins for 10K < k < 100K:
70497*2^27652+/-1
31257*2^22312+/-1

39 twins for 100K < k < 1M:
(highest 10 listed; see 'twins1M' web page for rest)
815751*2^29705+/-1
953337*2^28520+/-1
771843*2^28494+/-1
445569*2^28353+/-1
198417*2^27858+/-1
293445*2^27643+/-1
939015*2^27542+/-1
228015*2^27509+/-1
294723*2^27504+/-1
766293*2^27110+/-1
(etc.)

All checked for triplets...no luck.

Testing is currently at n=30.4K and sieving at n=40K. The search on 2 cores continues to n=100K. A 3rd core will be added at n=40K.


Gary
gd_barnes is offline   Reply With Quote
Old 2008-02-09, 04:29   #30
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

23·3·52·17 Posts
Default

The "all-twin" search for k < 1M is now up to n=36.1K. See the web pages in this thread.

There were 11 twins from n=30K-36.1K. Also found was the largest known Riesel/Proth twin for k<100K. Here is the complete list for the range:

k<100K:
51315*2^32430+/-1

100K<k<1M:
892881*2^36075+/-1
338205*2^35351+/-1
959715*2^34895+/-1
143835*2^33826+/-1
649545*2^33398+/-1
440685*2^31989+/-1
249435*2^30977+/-1
282891*2^30309+/-1
383775*2^30279+/-1
523851*2^30197+/-1


Current known Riesel/Proth twin prime records:
k<1M 134583*2^80828+/-1 (from top-5K site)
k<100K 51315*2^32430+/-1 (from this effort)
k<10K 7485*2^20023+/-1 (from top-5K site)
k<1K 915*2^11455+/-1 (from top-5K site)


Gary
gd_barnes is offline   Reply With Quote
Old 2008-02-11, 20:45   #31
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

23×3×52×17 Posts
Default

I posted 2 days too early. In just another 100n up to n=36.2K, I found 2 more twins, one for k<100K!:

47553*2^36172+/-1
296139*2^36125+/-1


The first one is the new standard to beat for k<100K.


Gary
gd_barnes is offline   Reply With Quote
Old 2008-02-21, 06:32   #32
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

3·54 Posts
Default

Quote:
Originally Posted by gd_barnes View Post
If you know someone in the forum there, perhaps you could ask them to expand the list to include the first prime odd-k for each n up to n=10K. That would be interesting to see.

Gary
Quote:
Originally Posted by jasong View Post
[very masculine voice]
THIS SOUNDS LIKE A JOB FOR...PFGW!!!
[/very masculine voice]

Now, if I could just find my PFGW suit. It's got 'PFGW Man' written on the front, and it shows off my anatomy so well that I've been banned from wearing it in a few places.
It appears that Jasong couldn't find his PFGW suit, perhaps it was in a closet marked "unwanted Xmas gifts"

Anyway, analysing Gary's <100K site produces the following table:

I will try to fill up to n=500

Regards

Robert

Code:
n     1st k
1	3
2	1
3	9
4	15
5	81
6	3
7	9
8	57
9	45
10	15
11	99
12	165
13	369
14	45
15	345
16	117
17	381
18	3
19	69
20	447
21	81
22	33
23	1179
24	243
25	765
26	375
27	81
28	387
29	45
30	345
31	681
32	585
33	375
34	267
35	741
36	213
37	429
38	3093
39	165
40	267
41	255
42	1095
43	9
44	147
45	849
46	405
47	1491
48	177
49	1941
50	927
51	1125
52	1197
53	2001
54	333
55	519
56	1065
57	585
58	657
59	129
60	147
61	141
62	417
63	9
64	1623
65	99
66	2985
67	2469
68	4497
69	5259
70	597
71	7029
72	315
73	3081
74	2457
75	4161
76	603
77	3591
78	2697
79	3681
80	213
81	2079
82	1545
83	4089
84	165
85	1455
86	10287
87	1629
88	387
89	3321
90	14487
91	849
92	1467
93	3339
94	3747
95	6639
96	7737
97	8265
98	15735
99	5589
100	4107
101	9225
102	537
103	2079
104	1203
105	1515
106	1323
107	7245
108	6897
109	20631
110	2205
111	2175
112	3087
113	11145
114	7887
115	14841
116	2673
117	5961
118	3303
119	5565
120	3957
121	9849
122	1497
123	1125
124	1983
125	699
126	2565
127	8721
128	4467
129	5835
130	6063
131	1089
132	3117
133	1455
134	3105
135	6129
136	22365
137	3555
138	24453
139	8121
140	4143
141	1179
142	6903
143	309
144	11505
145	14121
146	17037
147	1419
148	17157
149	5715
150	345
151	13179
152	4497
153	3741
154	10803
155	105
156	30657
157	14439
158	14445
159	7569
160	17295
161	25425
162	6555
163	2121
164	3717
165	13731
166	7737
167	18711
168	765
169	1881
170	19335
171	32361
172	2847
173	2115
174	4155
175	1941
176	1383
177	24771
178	2277
179	10479
180	4287
181	441
182	19617
183	27261
184	2493
185	5481
186	28227
187	20175
188	1935
189	45
190	525
191	13719
192	8337
193	12495
194	18087
195	27099
196	9753
197	56745
198	4245
199	8265
200	63855
201	27261
202	69855
203	14199
204	1755
205	5529
206	1197
207	54639
208	69753
209	10461
210	10575
211	9
212	3615
213	26145
214	9225
215	5859
216	12255
217	6615
218	16653
219	18531
220	24087
221	6555
222	7947
223	12909
224	49203
225	49341
226	10857
227	3405
228	25665
229	19041
230	21255
231	2571
232	30015
233	47079
234	24915
235	77751
236	33333
237	16641
238	135
239	17289
240	10197
241	4059
242	1023
243	50319
244	22113
245	9915
246	17535
247	19041
248	15795
	
250	23007
251	5139
252	17787
253	15519
254	12957
255	1215
256	64647
257	9951
258	74253
259	2805
260	2475
261	15711
262	25767
263	9789
264	165
265	13209
266	19593
267	33105
	
269	969
270	98907
271	19335
272	22317
273	10635
274	13713
275	34245
276	41085
277	24129
278	26025
279	24579
	
281	3381
282	165
283	20175
284	23853
285	25881
286	61647
287	39315
288	2667
289	67695
290	34647
291	1899
292	33735
293	48861
294	2373
295	58179
296	66507
297	9609
298	20085
299	6405
	
301	44529
302	16575
303	22815
304	99297
305	21015
306	21075
307	91455
308	9993
309	15069
310	9543
311	79719
312	36195
313	14649
314	7605
315	67461
316	16035
317	12951
318	20295
319	41349
320	82473
321	20781
322	19293
323	88791
324	55605
325	23295
326	25473
327	10071
328	28653
329	48489
330	12477
331	7791
	
333	669
334	16437
335	42699
336	93765
337	12909
338	5253
339	23415
	
341	21585
342	76995
	
344	573
345	31719
346	15717
347	43011
348	33765
349	28149
350	71253
	
352	14727
353	85431
354	10545
355	7785
356	38853
357	70851
358	65385
359	9129
	
361	5049
362	49815
363	26871
	
365	9369
366	74763
367	18669
368	16905
369	49299
370	12543
371	3321
	
	
374	40257
375	26679
376	14223
377	23709
378	22713
379	66039
380	1023
381	67749
382	34683
	
	
385	72609
	
387	1701
388	56817
389	10791
390	39345
391	615
	
393	95151
394	67023
395	21315
396	28065
397	24039
398	19065
	
400	48207
401	28941
402	83337
	
404	22887
405	74085
406	35253
407	79215
408	31635
409	36825
410	50835
	
412	58065
413	86061
414	39513
415	17061
416	32025
417	30705
418	1743
419	71919
	
421	66075
422	84057
423	81651
424	65337
	
	
427	83139
428	36903
429	39039
	
431	66219
432	69477
433	50181
434	54033
435	5415
436	30987
	
438	24693
439	56259
440	25077
441	15255
442	18795
443	3921
444	35793
445	9345
446	18663
447	30849
448	57717
449	69285
	
451	26355
	
453	17631
454	65193
455	2085
456	9063
457	15561
458	4323
	
460	34725
461	92235
	
463	53991
464	63903
465	24351
466	12147
467	33351
468	2565
	
470	5547
	
472	8787
	
474	49053
475	13935
476	33375
477	33315
	
479	53019
	
	
	
	
484	50295
485	27975
	
	
488	7503
489	73671
490	37095
491	37719
492	1995
493	97449
494	39207
495	27261
	
497	99015
498	37755
	
500	52305
	
502	35397
503	66735
504	35877
505	74985
	
507	5565
	
	
	
511	43485
512	51765
	
514	53355
515	87951
516	12045
517	66375
	
519	83211
520	4257
521	17709
522	80175
523	76089
524	47403
525	5775
526	62337
527	43371
528	43137
529	10365
530	74367
	
	
	
534	84627
	
536	49893
537	23541
538	2007
539	12711
	
541	8031
	
543	40119
	
545	18801
546	297
547	5979
548	97293
	
550	26853
551	4035
552	29187
	
554	70923
555	67329
	
	
558	80385
	
560	39243
	
	
	
	
	
566	75225
567	28131
	
569	60411
570	25485
571	27909
572	20037
573	14259
574	70107
575	38835
	
	
	
	
580	88257
581	76569
582	22587
583	28005
584	15177
	
586	83175
	
588	50235
	
590	42777
	
592	86385
593	45315
	
	
596	41625
	
	
599	74229
600	82023
603	33885
610	86973
611	8781
612	47313
613	94005
615	34059
616	79353
617	29919
618	54015
619	18429
620	55203
621	46035
622	87795
623	12285
626	16323
635	52419
636	78033
643	91629
644	84045
647	24249
648	78453
650	3723
654	61353
655	38835
657	21999
658	75447
660	50943
661	77505
662	32067
669	58725
672	15993
677	3405
680	7605
684	24537
689	13689
690	46545
691	38229
692	47937
694	13197
695	2985
696	96813
703	5355
707	37149
710	60693
711	25029
713	92529
714	35817
717	78561
718	86193
720	89577
725	20115
726	213
727	35589
728	30933
734	50025
736	5013
737	11175
738	95937
740	51975
742	58683
743	48075
744	9753
745	9165
748	42777
750	22407
758	84057
762	48615
765	73059
767	315
768	65475
771	56199
773	62391
776	26775
780	51777
781	88299
786	58257
787	17481
788	20997
789	19485
793	98649
794	18495
799	95565
805	72861
809	47055
811	70539
813	10125
817	64401
821	49041
824	66975
827	12285
828	78375
829	1365
831	24609
833	49539
837	62361
841	86679
844	87303
846	61785
847	5265
852	53763
853	18885
856	87495
857	88095
858	63135
861	37359
863	93765
865	31575
867	60681
873	55209
874	75783
875	50565
877	31005
880	4107
882	17145
884	25833
886	87465
888	45675
889	59421
896	11925
898	59925
899	68901
903	23901
906	24747
908	88407
914	5673
921	94629
922	10533
925	50595
927	80139
928	79623
929	83271
933	94335
934	41727
936	52953
940	5955
945	60729
947	27825
948	61425
949	23805
950	13503
953	21741
954	45243
957	77805
958	66417
961	98061
965	7995
966	82995
969	77565
973	16011
976	68313
983	10485
988	97323
992	56685
994	24963
1007	37275
1008	48225
1013	74091
1014	35523
1018	19887
1028	98493
1032	177
1034	16233
1037	71421
1045	94065
1048	3885
1052	85845
1055	91755
1056	88515
1057	33405
1059	60099
1066	90165
1067	85911
1070	70623
1075	13131
1076	50025
1084	15315
1084	16665
1086	69417
1098	58287
1102	27435
1104	4275
1107	48681
1110	11007
1122	60513
1134	83205
1142	11007
1156	1035
1167	54339
1168	62823
1173	52461
1175	46791
1188	65613
1193	84435
1197	45201
1217	14199
1221	88329
1228	79203
1229	42399
1237	74109
1241	13629
1244	64233
1245	88575
1251	75705
1256	53865
1261	32265
1267	95229
1270	71805
1272	50655
1274	95847
1282	99105
1286	9183
1295	49119
1299	3339
1312	15657
1314	46965
1321	1065
1325	62265
1327	2625
1338	92115
1354	38565
1355	62289
1367	7755
1383	67821
1389	97899
1390	14877
1391	76479
1394	88155
1402	80103
1406	18003
1408	98475
1425	86205
1431	75519
1440	10083
1441	74031
1446	93837
1447	51651
1462	15927
1466	74505
1468	85077
1471	81489
1475	66381
1483	57891
1500	32547
1509	86361
1532	83973
1533	36045
1553	291
1556	81255
1566	42507
1599	15375
1603	89895
1616	78327
1623	33549
1625	65835
1640	34215
1652	33957
1660	20733
1672	56685
1676	96897
1677	24969
1678	34725
1689	27765
1718	51747
1721	45951
1757	41229
1763	29481
1767	84159
1786	42825
1793	95151
1794	98583
1820	79335
1823	57495
1849	87585
1858	29835
1860	13317
1869	82275
1880	22035
1900	4425
1933	39171
1954	8007
1966	63237
1971	3885
1985	31545
2024	10095
2083	84609
2112	59553
2129	11655
2138	40215
2162	33117
2182	53955
2185	66729
2191	4359
2196	24405
2213	6201
2253	75219
2255	7419
2278	43947
2280	25293
2333	43089
2470	60957
2473	52935
2498	56727
2501	86085
2518	94815
2529	33939
2569	79029
2637	89115
2679	61269
2685	93429
2695	59415
2707	32811
2743	52011
2748	84255
2821	6075
2827	20805
2834	61947
2844	58053
2846	10725
2867	36159
2887	88629
2899	69735
2945	12195
3004	57267
3017	5559
3074	90705
3104	58143
3179	41205
3215	43095
3229	49449
3283	1149
3426	34365
3460	2403
3503	83331
3551	36159
3553	4845
3587	51591
3601	88311
3641	69069
3646	40713
3722	5373
3826	4935
3830	21417
3846	24015
3867	31539
3873	88071
3891	80661
3942	34407
3989	49455
4335	32721
4619	66969
4787	74565
4884	22767
4901	2565
4997	31569
5147	58311
5154	88335
5316	43923
5396	85107
5459	82005
5738	58983
5907	5775
6177	79515
6593	45639
6634	4737
6885	33801
7170	77367
7618	74313
7631	54729
7727	74229
7768	33957
8060	69927
8160	31335
8335	3975
8529	459
8825	53985
9154	61593
9869	33891
10601	10941
10929	34911
11455	915
11493	57201
11710	78045
12178	73005
13153	3981
13466	44943
15263	88665
15770	74193
17372	77517
17527	14439
17705	96321
17987	88269
18989	56361
19742	98067
19817	53889
20023	7485
22312	31257
27652	70497
32430	51315
36172	47553
robert44444uk is offline   Reply With Quote
Old 2008-02-21, 09:14   #33
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

3×54 Posts
Default low k for each n to 1000

Here is a table of lowest k for each twin to n=1000

Does anyone want to take further?

* denotes jumping champion

Code:
1	3*
2	1
3	9*
4	15*
5	81*
6	3
7	9
8	57
9	45
10	15
11	99*
12	165*
13	369*
14	45
15	345
16	117
17	381*
18	3
19	69
20	447*
21	81
22	33
23	1179*
24	243
25	765
26	375
27	81
28	387
29	45
30	345
31	681
32	585
33	375
34	267
35	741
36	213
37	429
38	3093*
39	165
40	267
41	255
42	1095
43	9
44	147
45	849
46	405
47	1491
48	177
49	1941
50	927
51	1125
52	1197
53	2001
54	333
55	519
56	1065
57	585
58	657
59	129
60	147
61	141
62	417
63	9
64	1623
65	99
66	2985
67	2469
68	4497*
69	5259*
70	597
71	7029*
72	315
73	3081
74	2457
75	4161
76	603
77	3591
78	2697
79	3681
80	213
81	2079
82	1545
83	4089
84	165
85	1455
86	10287*
87	1629
88	387
89	3321
90	14487*
91	849
92	1467
93	3339
94	3747
95	6639
96	7737
97	8265
98	15735*
99	5589
100	4107
101	9225
102	537
103	2079
104	1203
105	1515
106	1323
107	7245
108	6897
109	20631*
110	2205
111	2175
112	3087
113	11145
114	7887
115	14841
116	2673
117	5961
118	3303
119	5565
120	3957
121	9849
122	1497
123	1125
124	1983
125	699
126	2565
127	8721
128	4467
129	5835
130	6063
131	1089
132	3117
133	1455
134	3105
135	6129
136	22365*
137	3555
138	24453*
139	8121
140	4143
141	1179
142	6903
143	309
144	11505
145	14121
146	17037
147	1419
148	17157
149	5715
150	345
151	13179
152	4497
153	3741
154	10803
155	105
156	30657*
157	14439
158	14445
159	7569
160	17295
161	25425
162	6555
163	2121
164	3717
165	13731
166	7737
167	18711
168	765
169	1881
170	19335
171	32361*
172	2847
173	2115
174	4155
175	1941
176	1383
177	24771
178	2277
179	10479
180	4287
181	441
182	19617
183	27261
184	2493
185	5481
186	28227
187	20175
188	1935
189	45
190	525
191	13719
192	8337
193	12495
194	18087
195	27099
196	9753
197	56745*
198	4245
199	8265
200	63855*
201	27261
202	69855*
203	14199
204	1755
205	5529
206	1197
207	54639
208	69753
209	10461
210	10575
211	9
212	3615
213	26145
214	9225
215	5859
216	12255
217	6615
218	16653
219	18531
220	24087
221	6555
222	7947
223	12909
224	49203
225	49341
226	10857
227	3405
228	25665
229	19041
230	21255
231	2571
232	30015
233	47079
234	24915
235	77751*
236	33333
237	16641
238	135
239	17289
240	10197
241	4059
242	1023
243	50319
244	22113
245	9915
246	17535
247	19041
248	15795
249	168831*
250	23007
251	5139
252	17787
253	15519
254	12957
255	1215
256	64647
257	9951
258	74253
259	2805
260	2475
261	15711
262	25767
263	9789
264	165
265	13209
266	19593
267	33105
268	45213
269	969
270	98907
271	19335
272	22317
273	10635
274	13713
275	34245
276	41085
277	24129
278	26025
279	24579
280	128505
281	3381
282	165
283	20175
284	23853
285	25881
286	61647
287	39315
288	2667
289	67695
290	34647
291	1899
292	33735
293	48861
294	2373
295	58179
296	66507
297	9609
298	20085
299	6405
300	230085*
301	44529
302	16575
303	22815
304	99297
305	21015
306	21075
307	91455
308	9993
309	15069
310	9543
311	79719
312	36195
313	14649
314	7605
315	67461
316	16035
317	12951
318	20295
319	41349
320	82473
321	20781
322	19293
323	88791
324	55605
325	23295
326	25473
327	10071
328	28653
329	48489
330	12477
331	7791
332	345675*
333	669
334	16437
335	42699
336	93765
337	12909
338	5253
339	23415
340	128625
341	21585
342	76995
343	153645
344	573
345	31719
346	15717
347	43011
348	33765
349	28149
350	71253
351	127305
352	14727
353	85431
354	10545
355	7785
356	38853
357	70851
358	65385
359	9129
360	162243
361	5049
362	49815
363	26871
364	210447
365	9369
366	74763
367	18669
368	16905
369	49299
370	12543
371	3321
372	138765
373	151839
374	40257
375	26679
376	14223
377	23709
378	22713
379	66039
380	1023
381	67749
382	34683
383	114951
384	126747
385	72609
386	114687
387	1701
388	56817
389	10791
390	39345
391	615
392	108195
393	95151
394	67023
395	21315
396	28065
397	24039
398	19065
399	102795
400	48207
401	28941
402	83337
403	101535
404	22887
405	74085
406	35253
407	79215
408	31635
409	36825
410	50835
411	273429
412	58065
413	86061
414	39513
415	17061
416	32025
417	30705
418	1743
419	71919
420	224415
421	66075
422	84057
423	81651
424	65337
425	237765
426	251475
427	83139
428	36903
429	39039
430	110157
431	66219
432	69477
433	50181
434	54033
435	5415
436	30987
437	102309
438	24693
439	56259
440	25077
441	15255
442	18795
443	3921
444	35793
445	9345
446	18663
447	30849
448	57717
449	69285
450	155463
451	26355
452	258345
453	17631
454	65193
455	2085
456	9063
457	15561
458	4323
459	104661
460	34725
461	92235
462	229227
463	53991
464	63903
465	24351
466	12147
467	33351
468	2565
469	108795
470	5547
471	139935
472	8787
473	184281
474	49053
475	13935
476	33375
477	33315
478	141315
479	53019
480	162897
481	233115
482	143163
483	150939
484	50295
485	27975
486	101055
487	156051
488	7503
489	73671
490	37095
491	37719
492	1995
493	97449
494	39207
495	27261
496	208845
497	99015
498	37755
499	131439
500	52305
501	207945
502	35397
503	66735
504	35877
505	74985
506	103107
507	5565
508	216243
509	107631
510	262035
511	43485
512	51765
513	134115
514	53355
515	87951
516	12045
517	66375
518	366555*
519	83211
520	4257
521	17709
522	80175
523	76089
524	47403
525	5775
526	62337
527	43371
528	43137
529	10365
530	74367
531	104409
532	347457
533	396441*
534	84627
535	278535
536	49893
537	23541
538	2007
539	12711
540	174297
541	8031
542	121065
543	40119
544	330015
545	18801
546	297
547	5979
548	97293
549	157209
550	26853
551	4035
552	29187
553	190485
554	70923
555	67329
556	130227
557	105381
558	80385
559	300561
560	39243
561	112581
562	176205
563	199989
564	117243
565	120069
566	75225
567	28131
568	239247
569	60411
570	25485
571	27909
572	20037
573	14259
574	70107
575	38835
576	247035
577	126615
578	136413
579	404871*
580	88257
581	76569
582	22587
583	28005
584	15177
585	210051
586	83175
587	173355
588	50235
589	133911
590	42777
591	389799
592	86385
593	45315
594	179163
595	257529
596	41625
597	268461
598	147135
599	74229
600	82023
601	135585
602	190695
603	33885
604	113475
605	264849
606	129705
607	368775
608	217143
609	228651
610	86973
611	8781
612	47313
613	94005
614	261075
615	34059
616	79353
617	29919
618	54015
619	18429
620	55203
621	46035
622	87795
623	12285
624	143265
625	104091
626	16323
627	140739
628	137907
629	223569
630	643737*
631	229749
632	506475
633	123891
634	242523
635	52419
636	78033
637	137835
638	227283
639	198459
640	558087
641	664941*
642	394203
643	91629
644	84045
645	274395
646	250923
647	24249
648	78453
649	109809
650	3723
651	205251
652	375843
653	624165
654	61353
655	38835
656	256605
657	21999
658	75447
659	101661
660	50943
661	77505
662	32067
663	374901
664	567573
665	258651
666	249345
667	127041
668	144717
669	58725
670	392013
671	130689
672	15993
673	178689
674	252693
675	376929
676	257613
677	3405
678	169893
679	469755
680	7605
681	217221
682	386127
683	151845
684	24537
685	243879
686	141705
687	246405
688	224625
689	13689
690	46545
691	38229
692	47937
693	152421
694	13197
695	2985
696	96813
697	102789
698	157587
699	436095
700	179865
701	317481
702	169827
703	5355
704	253995
705	330171
706	312387
707	37149
708	270177
709	158115
710	60693
711	25029
712	700005*
713	92529
714	35817
715	629211
716	118413
717	78561
718	86193
719	101361
720	89577
721	119721
722	150567
723	715449*
724	102213
725	20115
726	213
727	35589
728	30933
729	343359
730	308853
731	111285
732	142047
733	597339
734	50025
735	123585
736	5013
737	11175
738	95937
739	140481
740	51975
741	170625
742	58683
743	48075
744	9753
745	9165
746	131937
747	113271
748	42777
749	227871
750	22407
751	1025925
752	140967
753	110775
754	797433*
755	490281
756	490107
757	125169
758	84057
759	133521
760	404775
761	913671*
762	48615
763	242445
764	141243
765	73059
766	988437*
767	315
768	65475
769	484455
770	354417
771	56199
772	743433
773	62391
774	173667
775	125385
776	26775
777	188979
778	410187
779	239271
780	51777
781	88299
782	406707
783	108351
784	364203
785	193515
786	58257
787	17481
788	20997
789	19485
790	116103
791	217809
792	488805
793	98649
794	18495
795	119259
796	212157
797	526701
798	679623
799	95565
800	207663
801	291951
802	353127
803	267795
804	442227
805	72861
806	613383
807	136119
808	142785
809	47055
810	539157
811	70539
812	191085
813	10125
814	105537
815	234315
816	385887
817	64401
818	789453
819	377451
820	125385
821	49041
822	640677
823	268101
824	66975
825	134481
826	515955
827	12285
828	78375
829	1365
830	554925
831	24609
832	524217
833	49539
834	130323
835	155085
836	1175493*
837	62361
838	127905
839	238395
840	916815
841	86679
842	129237
843	122685
844	87303
845	451209
846	61785
847	5265
848	255693
849	163965
850	278427
851	382875
852	53763
853	18885
854	169407
855	157251
856	87495
857	88095
858	63135
859	555039
860	629997
861	37359
862	798315
863	93765
864	722967
865	31575
866	1744257*
867	60681
868	483735
869	399591
870	167967
871	1767711*
872	111027
873	55209
874	75783
875	50565
876	272085
877	31005
878	296043
879	622671
880	4107
881	134511
882	17145
883	430389
884	25833
885	1097925
886	87465
887	895101
888	45675
889	59421
890	910923
891	149091
892	115845
893	248349
894	173283
895	133875
896	11925
897	498981
898	59925
899	68901
900	105177
901	109305
902	1039227
903	23901
904	141615
905	344949
906	24747
907	248781
908	88407
909	179091
910	107457
911	551979
912	313485
913	127689
914	5673
915	136881
916	106413
917	233349
918	163377
919	280929
920	367023
921	94629
922	10533
923	382035
924	773367
925	50595
926	143403
927	80139
928	79623
929	83271
930	424167
931	2035431*
932	116385
933	94335
934	41727
935	390099
936	52953
937	164829
938	165537
939	369381
940	5955
941	202335
942	112053
943	317955
944	164787
945	60729
946	170085
947	27825
948	61425
949	23805
950	13503
951	385695
952	178173
953	21741
954	45243
955	351765
956	232947
957	77805
958	66417
959	399105
960	770193
961	98061
962	312297
963	1170699
964	177255
965	7995
966	82995
967	703701
968	514437
969	77565
970	113745
971	1390269
972	493173
973	16011
974	192255
975	947859
976	68313
977	230439
978	582717
979	262575
980	441357
981	402141
982	626943
983	10485
984	163497
985	411081
986	706773
987	1305255
988	97323
989	349521
990	417375
991	234291
992	56685
993	179445
994	24963
995	219069
996	237675
997	400941
998	330075
999	586899
1000	467343

Last fiddled with by robert44444uk on 2008-02-21 at 09:23
robert44444uk is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Sieving with powers of small primes in the Small Prime variation of the Quadratic Sieve mickfrancis Factoring 2 2016-05-06 08:13
Relativistic Twins davar55 Science & Technology 68 2015-01-20 21:01
3x*2^n-1 and 3x*2^n-1 possibly twins ? science_man_88 Riesel Prime Search 10 2010-06-14 00:33
The Twins GP2 Lounge 1 2003-11-18 04:50
NOT twins graeme Puzzles 11 2003-09-04 00:41

All times are UTC. The time now is 08:31.

Fri Sep 18 08:31:16 UTC 2020 up 8 days, 5:42, 0 users, load averages: 1.31, 1.58, 1.65

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.