![]() |
![]() |
#1 |
Dec 2008
Boycotting the Soapbox
2D016 Posts |
![]()
Is there a straightforward way to compute roots modulo p^2 with pari-gp?
Specifically, if p=2^107-1, then 4th roots of unity are free, 8th roots are computationally cheap (i.e. +/-2^53 +/- i*2^53, which can be done with rotate/add/sub), so the question is whether 16th roots have an exploitable special structure, too. |
![]() |
![]() |
![]() |
#2 | |
Dec 2008
Boycotting the Soapbox
72010 Posts |
![]() Quote:
Code:
Mod(127316999246511176001337524256693, 162259276829213363391578010288127) + Mod(100755747211248383624389262455139, 162259276829213363391578010288127)*I Code:
[1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1] Code:
[1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1] I looked at some of the 'karatsubized' results div/mod 2^57 and 2^58 but everything remained messy. Apparently a 2/8 split-radix is the best we can get. |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Cyclic fields with class number h | carpetpool | Abstract Algebra & Algebraic Number Theory | 0 | 2018-01-30 06:10 |
Ideal groupings in number fields | carpetpool | Abstract Algebra & Algebraic Number Theory | 3 | 2018-01-13 18:13 |
Pseudoprimes in special fields | devarajkandadai | Number Theory Discussion Group | 7 | 2017-12-06 01:46 |
Questions about Number Fields | Raman | Miscellaneous Math | 5 | 2013-06-12 13:54 |
On the basis of finite fields | meng_luckywolf | Math | 6 | 2007-12-13 04:21 |