![]() |
![]() |
#1 |
22·3·7·89 Posts |
![]()
Updated list at http://www.15k.org/homecandidate.htm
We will leave this list here for the forum search function. 15k*2^n -1 is frequently prime n, for values 15k: Payam#k w=weight/nash weight (reserved or tested)prover code 15k = 2889081195, w = 4.16/7261(reserved by Lars D.) 15k = 3428677395, w = 4.06/7102 15k = 1650292215, w = 4.04/7057(reserved b Luigi) 15k = 4142541975, w = 4.03/7066(reserved by Thomas R.) 15k = 3611911875, w = 4.03/7048(reserved by Kosmaj) 15k = 1748348745, w = 4.00/7006(reserved by James) 15k = 413468055, w = 3.99/6982(155000)L9 15k = 1019370495, w = 3.98/6959(reserved by wpolly) 15k = 1880720985, w = 3.97/6974(250000) 15k = 387376275, w = 3.97/6970(250000) 15k = 1014793065, w = 3.97/6967(reserved by James) 15k = 115029915, w = 3.97/6966 (reserved by Kosmaj) 15k = 290499495, w = 3.97/6961 15k = 1581823815, w = 3.97/6954(L83 has a prime for n=846116) 15k = 464857965, w = 3.95/6936 15k = 244716615, w = 3.94/6887(L9 has a prime for this 15k at n=136894) 15k = 4075360575, w = 3.93/6864(reserved by CedricVonck) 15k = 245630385, w = 3.91/6864(reserved by Larry) 15k = 775784295, w = 3.91/6832(L26 has a prime for this 15k at n=137131) 15k = 666625245, w = 3.90/6829(Reserved by Mark) 15k = 97102005, w = 3.90/6829(145000)L9 15k = 2809771965, w =3.88/6804(reserved by Thomas R. ) 15k = 736320585, w = 3.88/6793(reserved by Cruelty) 15k = 869688105, w = 3.87/6779(reserved by Amphoria) 15k = 504017085, w = 3.87/6784(250000) 15k = 959657985, w = 3.85/59 66(155000) 15k = 404643525, w = 3.84/6716 15k = 949473525, w = 3.82 64 67(reserved by Antiroach) 15k = 509070705, w = 3.82/6701(L8 has a prime for this 15k at n=174286) 15k = 190053435, w = 3.82/6694(reserved by James) 15k = 1803385155, w : 3.81/6667(reserved by James) 15k = 2175868695, w : 3.81/6674 15k = 54896985, w = 3.80/6669(reserved by James) 15k = 187466565, w = 3.79/6659(reserved by gribozavr) 15k = 954218265, w = 3.78/6616 15k = 825273735, w = 3.78/6616 15k = 8311875, w = 3.77/6584(215000 already tested by g73) 15k = 868409685, w = 3.76/6608(reserved by Thomas W.) 15k = 515106735, w = 3.76/6583 15k = 794977755, w = 3.75/6576 15k = 10474035, w = 3.74/6554(reserved by James) 15k = 518066835, w = 3.74/6553(250000) 15k = 810151485, w = 3.73/6520(250000) 15k = 954977595, w = 3.69 50 61(reserved by Lars D.) 15k = 904522905, w = 3.68/6440(290000) 15k = 978847155, w = 3.68/6471(L58 has a prime at n=211221) 15k = 968186505, w = 3.68/6459 15k = 1973886915, w = 3.68/6438 15k = 860541825, w = 3.67/6429 15k = 14549535, w = 3.66/6416(reserved by levitate) 15k = 99311355, w = 3.66/6424(reserved by James) 15k = 985389405, w = 3.66/6424(L104 has a prime at n=348347) 15k = 995887035, w = 3.63/6362(L58 has a prime at n=217131) 15k = 891103785, w = 3.63/6365(L27 has a prime at n=228056) 15k = 973197225, w = 3.62/6347(250k) 15k = 2305225065, w = 3.61/6336(200k) 15k = 854917635, w = 3.61/6331(263K Reserved by Mark) 15k = 853836555, w = 3.60/6317(Reserved by Mark) 15k = 801095295, w = 3.60/6330(Reserved by Mark) 15k = 957761805, w = 3.59/6293(Reserved by Mark) 15k = 391533285, w = 3.47/6081(Reserved by Mark) 15k = 786775275, w = 3.45/6060(Reserved by Mark) 15k = 706427865, w = 3.44/6010(Reserved by Mark) 15k = 316299555, w = 3.42/6018(Reserved by Mark) 15k = 627830775, w = 3.40/5936(250000) 15k = 621472995, w = 3.40/5975 15k = 597590565, w = 3.40/5961(L40 has a prime at n=206106) 15k = 373065, w = 3.37/5933(Reserved by James) 15k = 957860475 w = 3.36/5898(Reserved by James) 15k = 997867365, w = 3.55/6235 15k = 998895645, w = 3.50/6134(L40 has a prime at n=218527) 15k = 994508625, w = 3.47/6083(L40 has a prime at n=200033) 15k = 995233965, w = 3.44/6030(L40 has a prime at n=218448) 15k = 999096285, w = 3.40/5970(L40 has a prime at n=215410) 15k = 890505, w = 3.35/5858(reserved by Lars D.) 15k = 1105845, w = 3.28/5772(reserved by James) 15k = 906015, w = 3.26/5705(reserved by James) 15k = 405405, w =3.23/5686(reserved by Harsh A.) 15k = 868409685 Here are some untested 2805k, I recommend first testing all 15k up to n=5000, to make sure you find at least 50 primes, otherwise you may try another one. I've noted those k's which have primes on the top-5000 list as of Oct 1, 2005. np = Number of primes for the range n=0-10k. 15k : 13236795, w : 3.71(reserved by CedricVonck) 15k : 18487755, w : 3.64, np : 55 15k : 39547695, w : 3.69, np : 74 15k : 39418665, w : 3.64, np : 74 15k : 51003315, w : 3.71, np : 66 15k : 55951335, w : 3.65, np : 73 (reserved by grobie) 15k : 60714225, w : 3.62, np : 68 15k : 78290355, w : 3.60, np : 77 15k : 84854055, w : 3.62, np : 59 15k : 93532725, w : 3.64, np : 63 (g96 has a prime at 24k) 15k : 118547715, w : 3.67, np : 54 15k : 136151895, w : 3.62, np : 69 15k : 146261115, w : 3.66, np : 60 15k : 153784125, w : 3.67(reserved by lalera) 15k : 165054615, w : 3.60, np : 82 (250k) 15k : 166900305, w : 3.68, np : 60 15k : 168196215, w : 3.64, np : 75 15k : 187466565, w : 3.79, np : 56 15k : 190383765, w : 3.61, np : 73 15k : 205917855, w : 3.65, np : 64 15k : 208391865, w : 3.61, np : 67 15k : 210001935, w : 3.63, np : 55 15k : 228986175, w : 3.63, np : 75 15k : 240924255, w : 3.64, np : 71 15k : 244133175, w : 3.67, np : 76 15k : 244716615, w : 3.94 (L92 has a prime at n=216352) 15k : 252884775, w : 3.70, np : 64 15k : 271044345, w : 3.79(reserved by masser) 15k : 286578435, w : 3.63, np : 59 15k : 326325285, w : 3.66, np : 68 15k : 334639305, w : 3.63, np : 60 (g100 has a prime at n=91802) 15k : 355424355, w : 3.82 (reserved by the 15k team) 15k : 428062635, w : 3.67, np : 54 15k : 428573145, w : 3.66, np : 59 15k : 445419975, w : 3.65, np : 80 (reserved by Kosmaj) 15k : 451035585, w : 3.81, np : 66 15k : 475977645, w : 3.88, np : 62 (g78 has a prime at n=44640) 15k : 483124785, w : 3.64, np : 59 15k : 487281795, w : 3.60, np : 56 15k : 490271925, w : 3.71, np : 55 15k : 506036025, w : 3.75, np : 61 15k : 511090635, w : 3.61, np : 58 15k : 563701215, w : 3.60, np : 61 15k : 576312495, w : 3.62, np : 65 15k : 576839835, w : 3.74, np : 71 15k : 603885645, w : 3.68, np: 65 15k : 623442105, w : 3.66 (L40 has a prime at n=278654) 15k : 637220265, w : 3.62, np: 56 15k : 640872375, w : 3.70 (reserved by lalera) 15k : 646269195, w : 3.72(L20 has a prime at n=136630) 15k : 669545085, w : 3.60, np: 69 15k : 698632935, w : 3.67, np: 71 15k : 700383255, w : 3.63, np: 49 15k : 720708285, w : 3.60 , np: 58 15k : 721774185, w : 3.84 (L26 has a prime at n=176398) 15k : 736354575, w : 3.63, np: 63 15k : 743922465, w : 3.76, np: 62 15k : 744797625, w : 3.74, np: 62, 15k : 745818645, w : 3.70, np: 59 15k : 765414375, w : 3.80, np: 68 15k : 795085665, w : 3.60, np: 60 15k : 828010755, w : 3.64, np: 47 15k : 857996205, w : 3.67, np: 76 15k : 905215575, w : 3.62, np: 52 15k : 931863075, w : 3.69, np: 67 15k : 944984865, w : 3.63, np: 63 15k : 965337945, w : 3.60, np: 63 15k : 968911515, w : 3.70, np: 66 15k : 974392485, w : 3.67, np: 65 15k : 984008025, w : 3.63, np: 65 2145k 15k : 511893525, w : 3.62, np: 57 15k : 515179665, w : 3.64, np: 69 15k : 516080565, w : 3.60, np: 63 15k : 524857905, w : 3.68, np: 52 15k : 525359835, w : 3.63, np: 57 15k : 528229845, w : 3.60, np: 64 15k : 528980595, w : 3.61, np: 65 15k : 531803415, w : 3.65, np: 62 15k : 533026065, w : 3.66, np: 59 15k : 538169775, w : 3.66, np: 62 15k : 541546005, w : 3.63, np: 58 15k : 545544285, w : 3.60, np: 83 (reserved by Larry) 15k : 552193785, w : 3.61, np: 67 15k : 553956975, w : 3.65, np: 54 15k : 563948385, w : 3.66, np: 59 (g96 has a prime at n=24335) 15k : 565908915, w : 3.65, np: 52 15k : 565964685, w : 3.61, np: 71 15k : 576659655, w : 3.63, np: 53 15k : 577551975, w : 3.60, np: 73 15k : 584222925, w : 3.65, np: 69 15k : 586239225, w : 3.62, np: 59 15k : 586839825, w : 3.69, np: 56 15k : 587650635, w : 3.68, np: 74 15k : 576771195, w : 3.60, np: 66 15k : 595213905, w : 3.65, np: 69 15k : 613806765, w : 3.60 (prime at n=222487) 15k : 616385055, w : 3.60 (prime at n=264520) 15k : 617178705, w : 3.64 (prime at n=292998) 15k : 623442105, w : 3.66 (prime at n=278654) 15k : 625394055, w : 3.62 (prime at n=237601) 15k : 626157675, w : 3.61 (prime at n=294055) 15k : 636951315, w : 3.68 (prime at n=296737) 15k : 641494425, w : 3.69 (prime at n=280755) 15k : 648452805, w : 3.63 (prime at n=212227) 15k : 649023375, w : 3.66 (prime at n=295010) 15k : 688366965, w : 3.66 (prime at n=228788) 15k : 691490085, w : 3.66 (Lprime at n=281288) 15k : 725196615, w : 3.68 (prime at n=276377) 15k : 778049415, w : 3.62 (prime at n=276160) 15k : 770464695, w : 3.63 (prime at n=291529) 15k : 775393905, w : 3.62 (prime at n=296576) 15k : 757980795, w : 3.63 (prime at n=280165) 15k : 763094475, w : 3.66 (prime at n=426143) 15k : 742837095, w : 3.67 15k : 692305185, w : 3.65 (prime at n=282552) 15k : 698632935, w : 3.67, np: 71 15k : 16291275, w : 3.61(reserved by wpolly) (top bound of 15k = 4294967295) ![]() JOIN BY CHOOSING ONE OF THESE 15K. To reserve it, just post it, including your name or screen name in the "I'd like to help out" topic here at the forum. My Email address is TTcreation@aol.com Then follow the NOVICE INSTRUCTIONS. If you have any questions I will be happy to help you through the steps. :D The candidates are listed in order of their Robinson weight. You may want to take this into account when deciding your k. This means that you are about 3 times more likely to find a prime. <edit> SD - Fixed Novice Instruction link </edit> Last fiddled with by lsoule on 2005-10-25 at 04:35 |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Help to choose components for a Ryzen rig | robert44444uk | Hardware | 50 | 2018-04-07 20:41 |
If you choose an answer at random | Uncwilly | Lounge | 12 | 2018-02-14 15:00 |
How to calculate Nash/robinson weight? | cipher | No Prime Left Behind | 6 | 2009-05-09 15:35 |
Choose your own exponent? | Unregistered | PrimeNet | 3 | 2003-12-10 04:32 |
Pick and Choose | Wacky | Puzzles | 5 | 2003-07-16 20:02 |