![]() |
![]() |
#1 |
"Rashid Naimi"
Oct 2015
Remote to Here/There
5·401 Posts |
![]()
FWIW my ยข2:
The fact that it has not been proven to be without a solution so far is a strong indication that the probability of the existence of a solution is greater than 0. Yet due to the nurture of the problem, the probability of finding a solution decreases exponentially as the parameters get larger. Normally with a constant probability, no matter how low, infinite trials is guaranteed to produce a solution. This got me thinking. Could the probability of a solution decreases so rapidly (for larger parameters) that it would make it impossible for a solution to exist? I would say not. World appreciate your thoughts. Thank you in advance. |
![]() |
![]() |
![]() |
#2 |
Undefined
"The unspeakable one"
Jun 2006
My evil lair
5×1,223 Posts |
![]() |
![]() |
![]() |
![]() |
#3 | |
"Rashid Naimi"
Oct 2015
Remote to Here/There
5·401 Posts |
![]() Quote:
![]() https://en.m.wikipedia.org/wiki/Beal_conjecture Last fiddled with by a1call on 2017-09-17 at 20:20 |
|
![]() |
![]() |
![]() |
#4 |
"Rashid Naimi"
Oct 2015
Remote to Here/There
5×401 Posts |
![]()
Perhaps the following similar concepts would clarify:
Code:
print("\nBVC-100-A-Forum.gp\nBy a1call") initialProbability = 2 k=19 i=0 while(k!=1,{ i=i+1; k=random(initialProbability *i); print("** ",i," -> ",initialProbability *i," -> ", k); \\if (i>19,next(19)); }) print("**** Found a solution in ",i, " trials.") Code:
BVC-100-A-Forum.gp By a1call 2 19 0 ** 1 -> 2 -> 1 **** Found a solution in 1 trials. Code:
BVC-100-A-Forum.gp By a1call 3 19 0 ** 1 -> 3 -> 2 ** 2 -> 6 -> 3 ** 3 -> 9 -> 5 ** 4 -> 12 -> 9 ** 5 -> 15 -> 12 ** 6 -> 18 -> 17 ** 7 -> 21 -> 17 ** 8 -> 24 -> 18 ** 9 -> 27 -> 11 ** 10 -> 30 -> 3 ** 11 -> 33 -> 3 ** 12 -> 36 -> 14 ** 13 -> 39 -> 29 ** 14 -> 42 -> 18 ** 15 -> 45 -> 14 ** 16 -> 48 -> 1 **** Found a solution in 16 trials. Code:
BVC-100-A-Forum.gp By a1call 4 19 0 ** 1 -> 4 -> 2 ** 2 -> 8 -> 3 ** 3 -> 12 -> 5 ** 4 -> 16 -> 9 ** 5 -> 20 -> 17 ** 6 -> 24 -> 17 ** 7 -> 28 -> 18 ** 8 -> 32 -> 11 ** 9 -> 36 -> 7 ** 10 -> 40 -> 3 ** 11 -> 44 -> 14 ** 12 -> 48 -> 29 ** 13 -> 52 -> 18 ** 14 -> 56 -> 14 ** 15 -> 60 -> 1 **** Found a solution in 15 trials. Code:
BVC-100-A-Forum.gp By a1call 5 19 0 ** 1 -> 5 -> 3 ** 2 -> 10 -> 5 ** 3 -> 15 -> 9 ** 4 -> 20 -> 17 ** 5 -> 25 -> 17 ** 6 -> 30 -> 18 ** 7 -> 35 -> 23 ** 8 -> 40 -> 7 ** 9 -> 45 -> 3 ** 10 -> 50 -> 14 ** 11 -> 55 -> 29 ** 12 -> 60 -> 18 ** 13 -> 65 -> 28 ** 14 -> 70 -> 3 ** 15 -> 75 -> 19 ** 16 -> 80 -> 49 ** 17 -> 85 -> 57 ** 18 -> 90 -> 68 ** 19 -> 95 -> 43 ** 20 -> 100 -> 95 ** 21 -> 105 -> 6 ** 22 -> 110 -> 74 ** 23 -> 115 -> 57 ** 24 -> 120 -> 68 ** 25 -> 125 -> 66 ** 26 -> 130 -> 4 ** 27 -> 135 -> 8 ** 28 -> 140 -> 90 ** 29 -> 145 -> 2 ** 30 -> 150 -> 146 ** 31 -> 155 -> 37 ** 32 -> 160 -> 146 ** 33 -> 165 -> 29 ** 34 -> 170 -> 68 ** 35 -> 175 -> 3 ** 36 -> 180 -> 150 ** 37 -> 185 -> 86 ** 38 -> 190 -> 137 ** 39 -> 195 -> 180 ** 40 -> 200 -> 88 ** 41 -> 205 -> 4 ** 42 -> 210 -> 209 ** 43 -> 215 -> 67 ** 44 -> 220 -> 215 ** 45 -> 225 -> 143 ** 46 -> 230 -> 215 ** 47 -> 235 -> 43 ** 48 -> 240 -> 95 ** 49 -> 245 -> 163 ** 50 -> 250 -> 25 ** 51 -> 255 -> 5 ** 52 -> 260 -> 118 ** 53 -> 265 -> 98 ** 54 -> 270 -> 134 ** 55 -> 275 -> 273 ** 56 -> 280 -> 175 ** 57 -> 285 -> 13 ** 58 -> 290 -> 123 ** 59 -> 295 -> 250 ** 60 -> 300 -> 250 ** 61 -> 305 -> 66 ** 62 -> 310 -> 143 ** 63 -> 315 -> 274 ** 64 -> 320 -> 155 ** 65 -> 325 -> 299 ** 66 -> 330 -> 180 ** 67 -> 335 -> 229 ** 68 -> 340 -> 130 ** 69 -> 345 -> 248 ** 70 -> 350 -> 271 ** 71 -> 355 -> 24 ** 72 -> 360 -> 214 ** 73 -> 365 -> 341 ** 74 -> 370 -> 128 ** 75 -> 375 -> 139 ** 76 -> 380 -> 247 ** 77 -> 385 -> 167 ** 78 -> 390 -> 213 ** 79 -> 395 -> 377 ** 80 -> 400 -> 320 ** 81 -> 405 -> 203 ** 82 -> 410 -> 373 ** 83 -> 415 -> 152 ** 84 -> 420 -> 278 ** 85 -> 425 -> 68 ** 86 -> 430 -> 351 ** 87 -> 435 -> 412 ** 88 -> 440 -> 378 ** 89 -> 445 -> 407 ** 90 -> 450 -> 55 ** 91 -> 455 -> 65 ** 92 -> 460 -> 64 ** 93 -> 465 -> 420 ** 94 -> 470 -> 124 ** 95 -> 475 -> 117 ** 96 -> 480 -> 141 ** 97 -> 485 -> 57 ** 98 -> 490 -> 415 ** 99 -> 495 -> 79 ** 100 -> 500 -> 66 ** 101 -> 505 -> 243 ** 102 -> 510 -> 154 ** 103 -> 515 -> 351 ** 104 -> 520 -> 268 ** 105 -> 525 -> 21 ** 106 -> 530 -> 161 ** 107 -> 535 -> 135 ** 108 -> 540 -> 452 ** 109 -> 545 -> 467 ** 110 -> 550 -> 39 ** 111 -> 555 -> 479 ** 112 -> 560 -> 456 ** 113 -> 565 -> 380 ** 114 -> 570 -> 186 ** 115 -> 575 -> 207 ** 116 -> 580 -> 239 ** 117 -> 585 -> 309 ** 118 -> 590 -> 345 ** 119 -> 595 -> 481 ** 120 -> 600 -> 411 ** 121 -> 605 -> 420 ** 122 -> 610 -> 439 ** 123 -> 615 -> 358 ** 124 -> 620 -> 74 ** 125 -> 625 -> 512 ** 126 -> 630 -> 438 ** 127 -> 635 -> 33 ** 128 -> 640 -> 163 ** 129 -> 645 -> 278 ** 130 -> 650 -> 355 ** 131 -> 655 -> 179 ** 132 -> 660 -> 308 ** 133 -> 665 -> 352 ** 134 -> 670 -> 440 ** 135 -> 675 -> 421 ** 136 -> 680 -> 31 ** 137 -> 685 -> 21 ** 138 -> 690 -> 592 ** 139 -> 695 -> 256 ** 140 -> 700 -> 195 ** 141 -> 705 -> 166 ** 142 -> 710 -> 363 ** 143 -> 715 -> 562 ** 144 -> 720 -> 504 ** 145 -> 725 -> 120 ** 146 -> 730 -> 463 ** 147 -> 735 -> 353 ** 148 -> 740 -> 660 ** 149 -> 745 -> 673 ** 150 -> 750 -> 94 ** 151 -> 755 -> 39 ** 152 -> 760 -> 592 ** 153 -> 765 -> 519 ** 154 -> 770 -> 291 ** 155 -> 775 -> 229 ** 156 -> 780 -> 765 ** 157 -> 785 -> 281 ** 158 -> 790 -> 663 ** 159 -> 795 -> 106 ** 160 -> 800 -> 490 ** 161 -> 805 -> 548 ** 162 -> 810 -> 623 ** 163 -> 815 -> 642 ** 164 -> 820 -> 343 ** 165 -> 825 -> 231 ** 166 -> 830 -> 520 ** 167 -> 835 -> 196 ** 168 -> 840 -> 644 ** 169 -> 845 -> 383 ** 170 -> 850 -> 169 ** 171 -> 855 -> 486 ** 172 -> 860 -> 236 ** 173 -> 865 -> 724 ** 174 -> 870 -> 87 ** 175 -> 875 -> 685 ** 176 -> 880 -> 783 ** 177 -> 885 -> 675 ** 178 -> 890 -> 814 ** 179 -> 895 -> 259 ** 180 -> 900 -> 132 ** 181 -> 905 -> 696 ** 182 -> 910 -> 177 ** 183 -> 915 -> 393 ** 184 -> 920 -> 472 ** 185 -> 925 -> 679 ** 186 -> 930 -> 464 ** 187 -> 935 -> 242 ** 188 -> 940 -> 192 ** 189 -> 945 -> 788 ** 190 -> 950 -> 580 ** 191 -> 955 -> 825 ** 192 -> 960 -> 344 ** 193 -> 965 -> 672 ** 194 -> 970 -> 210 ** 195 -> 975 -> 516 ** 196 -> 980 -> 297 ** 197 -> 985 -> 318 ** 198 -> 990 -> 944 ** 199 -> 995 -> 345 ** 200 -> 1000 -> 583 ** 201 -> 1005 -> 689 ** 202 -> 1010 -> 819 ** 203 -> 1015 -> 757 ** 204 -> 1020 -> 718 ** 205 -> 1025 -> 942 ** 206 -> 1030 -> 857 ** 207 -> 1035 -> 677 ** 208 -> 1040 -> 102 ** 209 -> 1045 -> 828 ** 210 -> 1050 -> 733 ** 211 -> 1055 -> 75 ** 212 -> 1060 -> 597 ** 213 -> 1065 -> 36 ** 214 -> 1070 -> 500 ** 215 -> 1075 -> 222 ** 216 -> 1080 -> 273 ** 217 -> 1085 -> 626 ** 218 -> 1090 -> 826 ** 219 -> 1095 -> 795 ** 220 -> 1100 -> 705 ** 221 -> 1105 -> 352 ** 222 -> 1110 -> 550 ** 223 -> 1115 -> 41 ** 224 -> 1120 -> 580 ** 225 -> 1125 -> 742 ** 226 -> 1130 -> 871 ** 227 -> 1135 -> 746 ** 228 -> 1140 -> 760 ** 229 -> 1145 -> 429 ** 230 -> 1150 -> 531 ** 231 -> 1155 -> 20 ** 232 -> 1160 -> 336 ** 233 -> 1165 -> 643 ** 234 -> 1170 -> 102 ** 235 -> 1175 -> 998 ** 236 -> 1180 -> 704 ** 237 -> 1185 -> 582 ** 238 -> 1190 -> 982 ** 239 -> 1195 -> 83 ** 240 -> 1200 -> 114 ** 241 -> 1205 -> 616 ** 242 -> 1210 -> 580 ** 243 -> 1215 -> 798 ** 244 -> 1220 -> 1104 ** 245 -> 1225 -> 1070 ** 246 -> 1230 -> 726 ** 247 -> 1235 -> 568 ** 248 -> 1240 -> 900 ** 249 -> 1245 -> 97 ** 250 -> 1250 -> 645 ** 251 -> 1255 -> 518 ** 252 -> 1260 -> 278 ** 253 -> 1265 -> 1203 ** 254 -> 1270 -> 703 ** 255 -> 1275 -> 1122 ** 256 -> 1280 -> 1 **** Found a solution in 256 trials. Code:
** 252 -> 1512 -> 278 ** 253 -> 1518 -> 1203 ** 254 -> 1524 -> 703 ** 255 -> 1530 -> 1122 ** 256 -> 1536 -> 1 **** Found a solution in 256 trials. Code:
** 254 -> 1778 -> 703 ** 255 -> 1785 -> 1122 ** 256 -> 1792 -> 1632 ** 257 -> 1799 -> 1640 ** 258 -> 1806 -> 1597 ** 259 -> 1813 -> 1 **** Found a solution in 259 trials. Code:
** 99331 -> 794648 -> 474659 ** 99332 -> 794656 -> 618593 ** 99333 -> 794664 -> 1 **** Found a solution in 99333 trials. Code:
** 101759 -> 915831 -> 474659 ** 101760 -> 915840 -> 618593 ** 101761 -> 915849 -> 1 **** Found a solution in 101761 trials. initialProbability = 12 Code:
** 165391 -> 1984692 -> 113355 ** 165392 -> 1984704 -> 821599 ** 165393 -> 1984716 -> 1217526 ** 165394 -> 1984728 -> 1760329 ** 165395 -> 1984740 -> 1231605 ** 165396 -> 1984752 -> 1 **** Found a solution in 165396 trials. Code:
** 4687726 -> 60940438 -> 29800996 ** 4687727 -> 60940451 -> 56143258 ** 4687728 -> 60940464 -> 46069460 ** 4687729 -> 60940477 -> 13719312 ^C** 4687730 -> 60940490 -> 53141080 *** at top-level: ...om(initialProbability*i);print("** ",i," -> " *** ^-------------------- *** print: user interrupt after 14,836 ms **** Found a solution in i trials. Last fiddled with by a1call on 2017-09-17 at 22:09 |
![]() |
![]() |
![]() |
#5 | |
"Curtis"
Feb 2005
Riverside, CA
22·7·132 Posts |
![]() Quote:
Are you saying you can compute a probability of a solution? If so, doing a calculation that shows the probability goes to zero as the tested-limits increase is *not* a proof that a solution does not exist. Your what-if ponderings indicate a fundamental lack of grasp of what probability means; a cynic might say that you think not finding a solution means we won't find a solution, and further that you think we can "prove" we won't find a solution based on previous failed attempts. That's not probability at all, nor is it a proof; it's verbal hand-waving of no substance whatsoever. |
|
![]() |
![]() |
![]() |
#6 |
"Rashid Naimi"
Oct 2015
Remote to Here/There
5·401 Posts |
![]()
Another clearer way of expressing the question in OP is:
Is there a finite value for initialProbability in the above code, for which no solution will ever be found, even if you run the code indefinitely/for-infinitum. Last fiddled with by a1call on 2017-09-18 at 01:06 |
![]() |
![]() |
![]() |
#7 | |
Undefined
"The unspeakable one"
Jun 2006
My evil lair
5×1,223 Posts |
![]() Quote:
But what does that have to do with Beal's Conjecture? BTW: initialProbability is very badly named. Probabilities can't be more than 1 or less than 0. |
|
![]() |
![]() |
![]() |
#8 | |
"Rashid Naimi"
Oct 2015
Remote to Here/There
5×401 Posts |
![]() Quote:
You are correct however about a poor choice of words for the variable. A more accurate name would be inverseOfTheInitiakProbabilityMinusOne but I was not going to give my variable such an unnecessarily long name. The relation to the concept to finding a solution to Beal's conjecture should be obvious to most. I don't think it is necessary to elaborate any further. If you don't agree, please feel free to let people who can see the relationship respond instead. ![]() Thank you for all the replies. Last fiddled with by a1call on 2017-09-18 at 01:45 |
|
![]() |
![]() |
![]() |
#9 |
"Rashid Naimi"
Oct 2015
Remote to Here/There
7D516 Posts |
![]()
BTW, I believe the answer to my post number 6 is No, as pointed out in OP.
Last fiddled with by a1call on 2017-09-18 at 01:55 |
![]() |
![]() |
![]() |
#10 |
Undefined
"The unspeakable one"
Jun 2006
My evil lair
5×1,223 Posts |
![]() |
![]() |
![]() |
![]() |
#11 |
Undefined
"The unspeakable one"
Jun 2006
My evil lair
5·1,223 Posts |
![]()
I wanted you to explain the relevance of your code. I find sometimes people can see insight when asked to explain things to others.
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Prime conjecture | Stan | Math | 39 | 2021-03-22 03:03 |
Goldbach Conjecture | MattcAnderson | MattcAnderson | 3 | 2017-03-17 15:34 |
This conjecture may be useful. | reddwarf2956 | Prime Gap Searches | 2 | 2016-03-01 22:41 |
Conjecture | devarajkandadai | Math | 13 | 2012-05-27 07:38 |
A New Conjecture | AntonVrba | Math | 19 | 2005-07-26 12:49 |