![]() |
![]() |
#78 | |
"Robert Gerbicz"
Oct 2005
Hungary
25·72 Posts |
![]() Quote:
The other option is to edit the table by changing say "10 50" to for example "8 50". (By this the code will be also slower but produce a little more solutions.) |
|
![]() |
![]() |
![]() |
#79 | |
Jun 2003
Oxford, UK
2,039 Posts |
![]() Quote:
For 130 my smith_check table looked as follows: 7 50 13 100 21 200 32 500 53 1000 65 2000 73 3000 89 6000 Look at my paper for prime frequencies at varying levels, this should help guide you on selecting the most appropriate levels. |
|
![]() |
![]() |
![]() |
#80 |
Jun 2003
Oxford, UK
2,039 Posts |
![]()
This the record holder! You can get excited if you find another or 116+ because that will be new
|
![]() |
![]() |
![]() |
#81 | |
Jun 2003
Oxford, UK
2,039 Posts |
![]() Quote:
I have posted all of your new values, except the 130, so can you include this in your next file you send, which should exclude the values in the posted file. The results to date (combined R & S) Code:
primes total 52 58 60 66 82 100 106 130 138 100 181 43 39 35 30 22 7 3 0 1 101 127 22 25 28 28 19 3 1 1 0 102 83 11 16 15 22 12 4 1 1 0 103 70 11 15 20 14 7 0 1 2 0 104 52 10 8 13 14 4 2 1 0 0 105 34 6 7 7 6 6 1 1 0 0 106 21 2 3 4 8 3 1 0 0 0 107 15 2 4 4 4 1 0 0 0 0 108 4 0 0 2 1 0 0 0 0 0 109 4 1 0 0 3 0 0 0 0 0 110 2 0 1 1 0 0 0 0 0 0 111 0 0 0 0 0 0 0 0 0 0 112 1 0 0 0 1 0 0 0 0 0 113 1 0 0 1 0 0 0 0 0 0 tot 595 108 118 130 131 74 18 8 4 1 |
|
![]() |
![]() |
![]() |
#82 |
Jun 2003
Oxford, UK
203910 Posts |
![]()
Thinking ahead a bit, can anyone write a dos code for cllr.exe and cnewpgen.exe or its pfgw equivalent to work together without intervention, so that we can automate >10000 checking.
An input file will look like: S 179782224211057 130 K=11806316649721727826033357267756435645 And the automated file will allow checking from n min to n max, with appropriate upper limit for p in cnewpgen.exe, output of prp-3 will go into a results file for each candidate. The output file name might be S_179782_130_[nmin]_n[max]_[# of primes found].txt and the file contents the value of prime n. Or perhaps a c code, in a dos shell, that does the same trick. Last fiddled with by robert44444uk on 2009-11-14 at 06:22 |
![]() |
![]() |
![]() |
#83 |
Jun 2003
Oxford, UK
2,039 Posts |
![]()
Below is a definitive list of payam racing records, which combines the old lists above with the new findings since Robert's program was written. It is short any information from Thomas 11 or R Gerbicz's finds on the Sierpinski side
Code:
Overall S R 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 12 11 12 13 13 13 13 15 16 15 14 17 17 17 15 18 20 18 16 19 23 19 17 23 28 23 18 28 29 28 19 31 32 31 20 32 37 32 21 41 41 41 22 45 45 45 23 47 48 47 24 53 55 53 25 55 56 55 26 59 63 59 27 63 68 63 28 67 77 67 29 79 81 79 30 83 83 87 31 85 85 88 32 92 94 92 33 94 96 94 34 98 108 98 35 101 117 101 36 120 120 128 37 135 135 135 38 137 142 137 39 142 143 142 40 151 166 151 41 160 167 160 42 167 173 167 43 180 185 180 44 182 199 182 45 188 210 188 46 204 234 204 47 247 254 247 48 260 271 260 49 270 288 270 50 292 292 326 51 323 323 327 52 338 338 360 53 368 368 370 54 378 383 378 55 392 427 392 56 424 457 424 57 438 471 438 58 439 521 439 59 466 522 466 60 513 550 513 61 565 565 565 62 577 577 622 63 583 583 631 64 589 589 673 65 605 605 698 66 612 612 718 67 682 682 764 68 735 735 799 69 841 841 892 70 847 847 954 71 1001 1001 1102 72 1003 1003 1137 73 1044 1044 1171 74 1079 1079 1180 75 1244 1252 1244 76 1327 1327 1378 77 1399 1409 1399 78 1414 1418 1414 79 1421 1421 1495 80 1557 1557 1647 81 1634 1634 1693 82 1663 1663 1706 83 1684 1684 2014 84 1818 1818 2026 85 1844 1844 2028 86 1861 1861 2112 87 1880 1880 2190 88 1892 1892 2340 89 1946 1946 2398 90 1951 1951 2448 91 1971 1971 2589 92 2044 2044 2693 93 2130 2130 2826 94 2150 2150 3360 95 2227 2227 3500 96 2328 2328 3909 97 2393 2393 4420 98 3215 3215 4924 99 3224 3224 4926 100 3258 3258 5566 101 3289 3289 5871 102 3405 3405 5941 103 3436 3436 6537 104 3450 3450 6855 105 3722 3722 6974 106 3833 3833 7560 107 4172 4172 7826 108 4227 4227 8127 109 4337 4337 8486 110 4495 4495 9071 111 7544 7544 9282 112 8221 8221 9543 113 8720 8720 9903 114 9023 9023 12716 115 9277 9277 12856 116 9971 9971 14007 |
![]() |
![]() |
![]() |
#84 |
Feb 2003
27·3·5 Posts |
![]()
Here are some new VPS for E=52, 58, 60, 130, and 138.
All but one duplicates are removed from the list. Just for your statistics I kept S 2965954850809 58 in the list, which is already known as S 48622210669 60. Still no 116+ candidates, but I found a very nice 115/10000! Will post more results (e.g. for E=66, 82, 100, 106) tomorrow... |
![]() |
![]() |
![]() |
#85 | |
Jun 2003
Oxford, UK
2,039 Posts |
![]() Quote:
115/10000..star! Will update the master file. Heading towards 1000 new VPS |
|
![]() |
![]() |
![]() |
#86 |
Jun 2003
Oxford, UK
2,039 Posts |
![]()
I notice there have been several views of Thomas11's file. If anyone is working on these numbers please reserve the number in this thread and post the results. No-one can get to 200 primes without this being a team effort. A little co-ordination will go a long way. And yes, we need people to take these numbers forward. Don't be shy.
We are now over 1000 known VPS (1027, R 577, S 450), of which 707 (452 Riesel, and 255 Sierpinski) are due to Robert G's program. We have a juicy 115, a 114, 1 113, 1 112, 1 111, 3 110, 4 109, 4 108, 19 107, 28 106, and 43 105. The most prime series might be one of these. Of great interest, as well as the obvious monsters we have 1 106 at 108/10000, 2 130's at 105/10000 and 3 138's at 100/10000. These have huge Nash weights. Last fiddled with by robert44444uk on 2009-11-16 at 15:47 |
![]() |
![]() |
![]() |
#87 |
Sep 2004
2×5×283 Posts |
![]()
Please explain step by step how to set up the client. Thank you.
Last fiddled with by em99010pepe on 2009-11-16 at 18:52 |
![]() |
![]() |
![]() |
#88 |
Jan 2009
Ireland
2·3·31 Posts |
![]()
program still crashing on me.anyone else have any problems?
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem | sweety439 | sweety439 | 11 | 2020-09-23 01:42 |
Dual Sierpinski/Riesel prime | sweety439 | Conjectures 'R Us | 0 | 2016-12-07 15:01 |
Sierpinski/ Riesel bases 6 to 18 | robert44444uk | Conjectures 'R Us | 139 | 2007-12-17 05:17 |
Sierpinski/Riesel Base 10 | rogue | Conjectures 'R Us | 11 | 2007-12-17 05:08 |
Sierpinski / Riesel - Base 22 | michaf | Conjectures 'R Us | 49 | 2007-12-17 05:03 |