mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > Prime Gap Searches

Reply
 
Thread Tools
Old 2022-01-24, 09:11   #34
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Suva, Fiji

111111110102 Posts
Default

The closest I have gotten to 100 primes following 1571162669*193#+129568114146274965711541776666046371290799466131684641935400586161726498035577 is 95 primes, within a period of 8346 compared to the well-known gap of 8350 following 29370323406802259015...95728858676728143227

sa I have devoted far too many resources to this, I will rest.

I also look briefly at the gap following 266190823030249*1129#/210-22844, but the length of time taken to check each possible range of 43k+ is too long. The best I achieved to date is 84 primes following
Code:
1101306855*1151#+67995358713657430359048762006542336703972224978670437437482633858004501532345946577534465437727848195399060224576423535081766982746433158823827486255141146637104093921266819644253660410020299599441986875748296750154110874438401578094603567430369998521465621565610168020569114152417095857527450304064588327045566434613143149884391737286419623885764232620049541559250548525133540166835094146124824189204240031275094620798491331644219231576586550944407818428480069934923985835440814277.
I found two other multipliers 1101311064 and 1101330536 giving the same 84 prime result. The closeness of the multipliers suggests that 100 primes is quite possible.

Last fiddled with by Dr Sardonicus on 2022-01-24 at 14:41 Reason: Add code tags for jillion-digit number
robert44444uk is offline   Reply With Quote
Old 2022-03-10, 21:16   #35
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

887 Posts
Default Herr Ober, Zahlen bitte!

Data for maximal gaps for p < 3*1013 and k <= 109 is now publicly available! Rejoice!
I'm probably taking this up to p = 1014. Well, unless anyone wants to join in.


Since the primes at the start of a maximal gap almost always* come in clusters, I did a quick check which pn had the highest number of occurrences for k <= 100, for 3*1013 downwards:
* I know that may be a rather daring statement...

Code:
#occ   p_n
2      29418557625949  (k = 11, 16)
4      29418557625841  (k = 13, 14, 17, 18)
21     29077945916363  (55 <= k <= 85)
23     1376589410333   (55 <= k <= 87)
30     16025473729     (52 <= k <= 98)
33     3099587         (48 <= k <= 100)
34     18313           (47 <= k <= 95)
39     1621            (24 <= k <= 96)
45     661             (18 <= k <= 100)
52     467             (9 <= k <= 99)
66     283             (6 <= k <= 100)
68     199             (2 <= k <= 96)
73     109             (2 <= k <= 100)
77     7
100    2
2 and 3 always occur as primes preceding maximal gaps. 5 doesn't always occur since for p = 3 (technically p2 = 3), for some k, p2+k and p2+k+1 are twin primes and in that case for p = 5 the gap length is the same as for p = 3. However, whenever 5 doesn't appear as a maximal gap, then 7 definitely does, and with respect to the number of occurrences, 7 is either in the lead by one or ties with 5. No p > 7 appears more often than p = 7 as a prime preceding a maximal gap for k = 1, 2, 3, ..., so p = 7 is a local maximum here.

But let's do this more formally:

Let \(p_n\) be the set of prime numbers and \(o_n(x)\) the set of the number of occurrences of \(p_n\) as primes preceding a maximal gap for all positive integers \(k <= x\).
\(p_n = \{2, 3, 5, 7, 11, ...\}\)
\(o_n(1) = \{1, 1, 0, 1, 0, 0, 0, 0, 1, 0, ...\}\)
\(o_n(1000) = \{1000, 1000, 827, 828, 658, 781, 660, 783, 661, 416, ...\}\)

\(o_n\) and the corresponding \(p_n\) constitutes a local maximum for the above table - in this case for x = 100 - if there does not exist \(m > n\) such that \(o_m(x) > o_n(x)\).

Conjecture: as \(k \to \infty\), the smallest \(p_n\) in the above table with a local maximum of number of occurrences as maximal gap commencers will be fixed. 19 chimes in for a larger range of \(k\), so the list of local maxima \(p_n\) will probably start {2, 7, 19, 109, 199, 9439 (?), ...} for k sufficiently large - this appears to be very tricky, at least numerically...

A follow-up question will be: for fixed x, at what point will the list of local maxima pn be settled? For example, in the above table for x = 100, could there be a larger pn preceding a maximal gap for more than half of the values of k (in which case on = 45 / pn = 661 and possibly on = 52 / pn = 467 will be superseded)? Or could there be a gap between consecutive primes so large that all - or at least most - of the pn for k > 1 also turn out as maximal gaps?

Once creativity strikes... k = 6 is the first k for which pn = 2, 3, 5, and 7 each start a maximal gap. For k = 12, all of the first five primes appear in the attached list. For k = 19, this makes six primes, and the first 13 (!) primes appear at k = 68 (so pn+68-pn becomes continually larger for every pn <= 41). I bet MattcAnderson would like to see this sequence in the OEIS

I guess I'm biting off more than I can chew...
Attached Files
File Type: zip GNCP_maxgaps_3e13.zip (127.7 KB, 76 views)
mart_r is offline   Reply With Quote
Old 2022-03-16, 22:06   #36
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

887 Posts
Default

Quote:
Originally Posted by Bobby Jacobs View Post
For each k, what are the first few gaps with record CSG ratio? This is very interesting.
These are the current record CSG for each k @ p <= 3.9*1013:
Code:
k   gap   CSG           p
1   766   0.8177620175  19581334192423
2   900   0.8918228764  21185697626083
3   986   0.9209295055  21185697625997
4   1034  0.9113778510  21185697625949
5   1080  0.9011654792  21185697625903
6   1154  0.8975282707  30103357357379
7   1148  0.8849957771  14580922576079
8   790   0.9265178066  11878096933
9   1316  0.9531616349  14580922575911
10  726   0.9509666672  866956873
11  754   0.9409492473  866956873
12  784   0.9363085666  866956873
13  1448  0.9564495245  5995661470529
14  1496  0.9574428891  5995661470481
15  1322  0.9535221550  396016668869
16  1358  0.9465344483  396016668833
17  1688  0.9836927546  8281634108801
18  1722  0.9710521630  8281634108767
19  1812  1.0165154301  8281634108677
20  1830  0.9880814955  8281634108677
21  1844  0.9563187743  8281634108663
22  1680  0.9463064905  968269822189
23  1890  0.9406396232  6200995919731
24  2134  0.9570149690  38986211476747
25  1780  0.9686207607  628177622389
26  2014  0.9341035539  6200995919683
27  1846  0.9534113552  628177622323
28  2088  0.9679949599  3999281381923
29  2116  0.9536970232  3999281381923
30  2400  0.9501210087  38029505632477
31  2478  0.9762139574  38986211476403
32  2524  0.9768240786  38986211476357
33  2560  0.9689295531  38986211476321
34  2286  0.9703645150  2481562496471
35  2320  0.9639271592  2481562496437
36  2616  0.9834171539  17931997861517
37  2396  0.9895774988  1933468592177
38  2444  0.9981020350  1933468592129
39  2472  0.9863866064  1933468592101
40  2538  0.9821956613  2481562496219
41  2760  0.9803005126  10631985435829
42  2380  0.9991966853  327076778191
43  2392  0.9719895984  327076778179
44  2442  0.9873916591  327076778129
45  2470  0.9784290501  327076778101
46  2762  0.9706117929  2481562496219
47  2520  0.9545666043  327076778051
48  2776  0.9415708602  1933468592101
49  3038  0.9415271787  10026387088493
50  3092  0.9531007373  10026387088439
51  2946  0.9460969948  2796148447381
52  2976  0.9382202652  2796148447381
53  3196  0.9187382475  11783179421593
54  3224  0.9279160571  10026387088493
55  3278  0.9396521374  10026387088439
56  3096  0.9237957124  2481562495661
57  3390  0.9461117876  11783179421371
58  3560  0.9395747528  29077945916363
59  3594  0.9376826431  28158788983159
60  3636  0.9343561260  29077945916363
61  3654  0.9164223001  29077945916363
62  3456  0.9287125490  5716399254341
63  3294  0.9469610659  1376589410369
64  3330  0.9464086867  1376589410333
65  3596  0.9378033618  6215409275507
66  3678  0.9740832743  6215409275249
67  3702  0.9617861382  6215409275249
68  3758  0.9762827903  6215409275249
69  3854  1.0242911884  6215409275249
70  3870  1.0052760984  6215409275249
71  3920  1.0147688787  6215409275249
72  3932  0.9927489370  6215409275237
73  3966  0.9891020412  6215409275041
74  4062  1.0366412505  6215409275041
75  4078  1.0180858187  6215409275041
76  4128  1.0276414005  6215409275041
77  4150  1.0142622729  6215409275407
78  4200  1.0238470491  6215409275357
79  4308  1.0809994193  6215409275249
80  4328  1.0659029505  6215409275249
81  4340  1.0444870805  6215409275237
82  4380  1.0459795515  6215409275177
83  4414  1.0426566161  6215409275143
84  4516  1.0944353381  6215409275041
85  4536  1.0796801338  6215409275041
86  4548  1.0586702538  6215409275029
87  4556  1.0347395141  6215409275021
88  4578  1.0221867581  6215409275041
89  4596  1.0066376308  6215409275041
90  4620  0.9959600976  6215409275041
91  4642  0.9838544524  6215409275041
92  5020  0.9684580361  36683716323913
93  5058  0.9781413471  33994032583531
94  5146  1.0006726694  36683716323913
95  5194  1.0063137564  36683716323913
96  5278  1.0371216659  36683716324039
97  5404  1.0977245069  36683716323913
98  5418  1.0792569593  36683716323899
99  5470  1.0876676245  36683716323847
100 5482  1.0680270856  36683716323847
101 5526  1.0708730803  36683716323791
102 5590  1.0876834546  36683716323913
103 5638  1.0933231416  36683716323913
104 5656  1.0781126752  36683716323847
105 5704  1.0837889389  36683716323847
106 5758  1.0936239342  36683716323913
107 5772  1.0758527238  36683716323899
108 5824  1.0843154811  36683716323847
109 5830  1.0612869894  36683716323841

Bonus: some instances CSG > 1 for k <= 1024 and p <= 2*10^12:
210 7700  1.0009864925  185067241757
211 7746  1.0126426509  185067241757
212 7760  1.0003343480  185067241757
213 7790  1.0000214554  185067241757
mart_r is offline   Reply With Quote
Old 2022-03-20, 20:33   #37
Bobby Jacobs
 
Bobby Jacobs's Avatar
 
May 2018

2×3×72 Posts
Default

Quote:
Originally Posted by mart_r View Post
Data for maximal gaps for p < 3*1013 and k <= 109 is now publicly available! Rejoice!
I'm probably taking this up to p = 1014. Well, unless anyone wants to join in.


Since the primes at the start of a maximal gap almost always* come in clusters, I did a quick check which pn had the highest number of occurrences for k <= 100, for 3*1013 downwards:
* I know that may be a rather daring statement...

Code:
#occ   p_n
2      29418557625949  (k = 11, 16)
4      29418557625841  (k = 13, 14, 17, 18)
21     29077945916363  (55 <= k <= 85)
23     1376589410333   (55 <= k <= 87)
30     16025473729     (52 <= k <= 98)
33     3099587         (48 <= k <= 100)
34     18313           (47 <= k <= 95)
39     1621            (24 <= k <= 96)
45     661             (18 <= k <= 100)
52     467             (9 <= k <= 99)
66     283             (6 <= k <= 100)
68     199             (2 <= k <= 96)
73     109             (2 <= k <= 100)
77     7
100    2
2 and 3 always occur as primes preceding maximal gaps. 5 doesn't always occur since for p = 3 (technically p2 = 3), for some k, p2+k and p2+k+1 are twin primes and in that case for p = 5 the gap length is the same as for p = 3. However, whenever 5 doesn't appear as a maximal gap, then 7 definitely does, and with respect to the number of occurrences, 7 is either in the lead by one or ties with 5. No p > 7 appears more often than p = 7 as a prime preceding a maximal gap for k = 1, 2, 3, ..., so p = 7 is a local maximum here.

But let's do this more formally:

Let \(p_n\) be the set of prime numbers and \(o_n(x)\) the set of the number of occurrences of \(p_n\) as primes preceding a maximal gap for all positive integers \(k <= x\).
\(p_n = \{2, 3, 5, 7, 11, ...\}\)
\(o_n(1) = \{1, 1, 0, 1, 0, 0, 0, 0, 1, 0, ...\}\)
\(o_n(1000) = \{1000, 1000, 827, 828, 658, 781, 660, 783, 661, 416, ...\}\)

\(o_n\) and the corresponding \(p_n\) constitutes a local maximum for the above table - in this case for x = 100 - if there does not exist \(m > n\) such that \(o_m(x) > o_n(x)\).

Conjecture: as \(k \to \infty\), the smallest \(p_n\) in the above table with a local maximum of number of occurrences as maximal gap commencers will be fixed. 19 chimes in for a larger range of \(k\), so the list of local maxima \(p_n\) will probably start {2, 7, 19, 109, 199, 9439 (?), ...} for k sufficiently large - this appears to be very tricky, at least numerically...

A follow-up question will be: for fixed x, at what point will the list of local maxima pn be settled? For example, in the above table for x = 100, could there be a larger pn preceding a maximal gap for more than half of the values of k (in which case on = 45 / pn = 661 and possibly on = 52 / pn = 467 will be superseded)? Or could there be a gap between consecutive primes so large that all - or at least most - of the pn for k > 1 also turn out as maximal gaps?

Once creativity strikes... k = 6 is the first k for which pn = 2, 3, 5, and 7 each start a maximal gap. For k = 12, all of the first five primes appear in the attached list. For k = 19, this makes six primes, and the first 13 (!) primes appear at k = 68 (so pn+68-pn becomes continually larger for every pn <= 41). I bet MattcAnderson would like to see this sequence in the OEIS

I guess I'm biting off more than I can chew...
How many times does 1327 appear in the list? 1327 has some big gaps to the next primes (1361, 1367, 1373, 1381, 1399, 1409, 1423). What about 1321? Since 1321 is near 1327, it should also appear a lot.
Bobby Jacobs is offline   Reply With Quote
Old 2022-03-21, 22:08   #38
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

887 Posts
Default

Quote:
Originally Posted by Bobby Jacobs View Post
How many times does 1327 appear in the list? 1327 has some big gaps to the next primes (1361, 1367, 1373, 1381, 1399, 1409, 1423). What about 1321? Since 1321 is near 1327, it should also appear a lot.
You're right. For small x, 1327 and some of the previous primes should occur quite often as primes preceding maximal gaps. For x >= 8, 1321 occurs more often than 1327, and for x >= 10, 1303 or 1307 occur more often than 1321.

Here's a list for the first 300 primes and the number of occurrences at x = 1000 (i.e. for all k <= 1000) - you clearly see the patterns juxtaposed to the gaps between the consecutive primes:
Code:
 p_n  o_n(1000)
   2  1000
   3  1000
   5  827
   7  828
  11  658
  13  781
  17  660
  19  783
  23  661
  29  416
  31  710
  37  408
  41  558
  43  742
  47  658
  53  418
  59  353
  61  687
  67  401
  71  555
  73  741
  79  416
  83  572
  89  406
  97  260
 101  409
 103  664
 107  625
 109  778
 113  669
 127  104
 131  247
 137  254
 139  524
 149  193
 151  433
 157  330
 163  306
 167  497
 173  363
 179  328
 181  653
 191  219
 193  481
 197  568
 199  745
 211  161
 223  84
 227  199
 229  372
 233  476
 239  352
 241  622
 251  216
 257  272
 263  269
 269  285
 271  572
 277  373
 281  541
 283  731
 293  238
 307  76
 311  184
 313  370
 317  470
 331  93
 337  144
 347  90
 349  278
 353  375
 359  304
 367  218
 373  248
 379  258
 383  414
 389  333
 397  239
 401  393
 409  241
 419  144
 421  374
 431  170
 433  409
 439  316
 443  484
 449  368
 457  250
 461  407
 463  667
 467  627
 479  163
 487  159
 491  298
 499  208
 503  345
 509  306
 521  114
 523  353
 541  37
 547  80
 557  60
 563  104
 569  128
 571  296
 577  233
 587  135
 593  179
 599  204
 601  450
 607  308
 613  291
 617  472
 619  667
 631  156
 641  121
 643  317
 647  428
 653  354
 659  320
 661  628
 673  157
 677  328
 683  297
 691  224
 701  142
 709  135
 719  94
 727  106
 733  143
 739  174
 743  303
 751  190
 757  228
 761  373
 769  230
 773  369
 787  88
 797  74
 809  47
 811  158
 821  90
 823  242
 827  332
 829  529
 839  200
 853  65
 857  167
 859  344
 863  431
 877  94
 881  218
 883  445
 887  493
 907  39
 911  115
 919  95
 929  76
 937  90
 941  178
 947  182
 953  197
 967  68
 971  157
 977  175
 983  204
 991  177
 997  206
1009  87
1013  196
1019  208
1021  449
1031  182
1033  404
1039  310
1049  187
1051  416
1061  202
1063  434
1069  335
1087  47
1091  146
1093  314
1097  418
1103  342
1109  325
1117  249
1123  274
1129  285
1151  27
1153  97
1163  76
1171  82
1181  65
1187  96
1193  126
1201  116
1213  58
1217  143
1223  156
1229  185
1231  414
1237  291
1249  112
1259  92
1277  15
1279  70
1283  159
1289  167
1291  352
1297  271
1301  411
1303  600
1307  580
1319  164
1321  424
1327  335
1361  0
1367  7
1373  23
1381  22
1399  2
1409  3
1423  1
1427  9
1429  35
1433  64
1439  54
1447  44
1451  107
1453  227
1459  183
1471  71
1481  58
1483  177
1487  283
1489  439
1493  467
1499  336
1511  123
1523  63
1531  84
1543  49
1549  77
1553  167
1559  172
1567  151
1571  270
1579  190
1583  311
1597  85
1601  190
1607  211
1609  453
1613  486
1619  370
1621  657
1627  406
1637  226
1657  27
1663  59
1667  132
1669  303
1693  11
1697  49
1699  131
1709  89
1721  47
1723  147
1733  83
1741  94
1747  126
1753  158
1759  180
1777  24
1783  57
1787  136
1789  290
1801  99
1811  82
1823  45
1831  54
1847  16
1861  7
1867  18
1871  49
1873  113
1877  174
1879  301
1889  143
1901  75
1907  116
1913  143
1931  23
1933  102
1949  24
1951  93
1973  6
1979  17
1987  21
As one might expect, 1361 has 0 occurrences (the next prime with 0 occurrences for x = 1000 is 2203).
(Note also that 1621 occurs more often than 1303. This is mostly because there are rather many primes between 1400 and 1500 but rather few between 1700 and 1800 as well as between 1800 and 1900.)

The first time p218 = 1361 appears as a prime preceding a maximal gap is for k = 1315 because p217+1315 = p1532 = 12853 and p218+1315 = p1533 = 12889, which is a gap of 36 between consecutive primes (i.e. more than the 34 between 1327 and 1361) and a gap of 11528 between p218 and p1533, while for all n < 218, pn+1315-pn < 11528.


If you'd like to play around with a larger set of data, check out the attachment.
Attached Files
File Type: zip Bobby.zip (185.2 KB, 69 views)
mart_r is offline   Reply With Quote
Old 2022-03-30, 16:55   #39
Bobby Jacobs
 
Bobby Jacobs's Avatar
 
May 2018

2·3·72 Posts
Default

Quote:
Originally Posted by mart_r View Post
Conjecture: as \(k \to \infty\), the smallest \(p_n\) in the above table with a local maximum of number of occurrences as maximal gap commencers will be fixed. 19 chimes in for a larger range of \(k\), so the list of local maxima \(p_n\) will probably start {2, 7, 19, 109, 199, 9439 (?), ...} for k sufficiently large - this appears to be very tricky, at least numerically...
I believe that as \(n\to\infty\), the primes p with the most occurrences will be based upon a lot of small prime gaps immediately before p. Therefore, 5659 should eventually beat 109 because the 5 prime gaps before 5659 are 6, 4, 2, 4, 2, but the 5 prime gaps before 109 are 8, 4, 2, 4, 2.
Bobby Jacobs is offline   Reply With Quote
Old 2022-04-13, 20:26   #40
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

11011101112 Posts
Default

Quote:
Originally Posted by Bobby Jacobs View Post
I believe that as \(n\to\infty\), the primes p with the most occurrences will be based upon a lot of small prime gaps immediately before p. Therefore, 5659 should eventually beat 109 because the 5 prime gaps before 5659 are 6, 4, 2, 4, 2, but the 5 prime gaps before 109 are 8, 4, 2, 4, 2.
p=5659 is not a good candidate for a record number of maximal gaps after p, as you can see in the attached graph. The graph shows pn vs. on(x) at x=500000. Points further to the right have a higher number of occurrences.
5659 is the 746th prime number. o746(x)=423464, while for p=9439, we already have o1170(x)=444555.
And, just as an aside, \(\lim_{x\to\infty} x/o_n(x) = 1\) (working out secondary terms will be interesting;).
Whether 9439 would eventually beat 109 remains to be seen...
Attached Thumbnails
Click image for larger version

Name:	GNCP_graph_n=500000.png
Views:	84
Size:	24.9 KB
ID:	26756  
mart_r is offline   Reply With Quote
Old 2022-04-22, 17:11   #41
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

887 Posts
Default What do you get if you multiply six by nine?

9439 beats 283 at around x=740000.
9439 does not appear to beat 199.
113173 may be the subsequent local maximum (beating 24109 for some x < 1.2e6). A lot more ok and a lot higher bound x would need to be looked at to see whether that remains true.
Note that 113173 is the penultimate number of an almost-decuplet or cousin-nonuplet or whatever you may call it. So Bobby's observation holds true at this point, with my addition that some large gaps directly after such a cluster (or, say, (p-\(\theta\)(p))/\(\sqrt{p}\) is not "too large", YMMV) make for good conditions to produce such "high performer" initial members of these generalized maximal gaps. We may invoke the performance indicator \(\lim_{x\to\infty} \frac{x}{(\log x -1)(x-o_n(x))}\). More sophisticated ideas are welcome.
In principle it might be possible that there exists a larger p that eventually beats 9439, or even 199 or 109 or...??
Intricate problem, delicate computation. Relocate focus? Allocate more resources? Vindicate my existence??

Code:
   k    p_k o_k(1e6)
   1      2 1000000
   2      3 1000000
   3      5  913974
   4      7  913975
   5     11  828143
   6     13  901885
   7     17  828145
   8     19  901887
   9     23  828146
  10     29  681628
  11     31  886659
  12     37  680180
  13     41  800714
  14     43  896535
  15     47  827790
  16     53  681558
  17     59  658923
  18     61  883217
  19     67  679222
  20     71  800359
  21     73  896477
  22     79  681232
  23     83  801182
  24     89  678585
  25     97  592056
  26    101  752065
  27    103  889285
  28    107  825738
  29    109  901630
  30    113  828113
  31    127  381766
  32    131  641396
  33    137  629027
  34    139  864356
  35    149  532451
  36    151  807001
  37    157  668832
  38    163  655002
  39    167  793753
  40    173  676703
  41    179  657575
  42    181  882331
  43    191  535553
  44    193  808696
  45    197  814221
  46    199  899274
  47    211  440323
  48    223  366557
  49    227  639491
  50    229  823828
  51    233  811478
  52    239  678221
  53    241  884641
  54    251  536345
  55    257  619570
  56    263  637297
  57    269  645947
  58    271  875046
  59    277  678153
  60    281  799895
  61    283  896333
  62    293  538088
  63    307  340314
  64    311  607258
  65    313  814055
  66    317  807355
  67    331  378875
  68    337  535249
  69    347  461147
  70    349  761814
  71    353  795136
  72    359  673490
  73    367  590485
  74    373  629575
  75    379  641650
  76    383  785544
  77    389  674505
  78    397  590903
  79    401  751480
  80    409  594445
  81    419  489062
  82    421  784242
  83    431  519907
  84    433  800681
  85    439  667121
  86    443  795923
  87    449  677548
  88    457  591710
  89    461  751923
  90    463  889212
  91    467  825736
  92    479  440288
  93    487  511336
  94    491  705113
  95    499  578974
  96    503  746090
  97    509  664344
  98    521  421689
  99    523  763580
 100    541  271180
 101    547  450118
 102    557  429483
 103    563  551413
 104    569  601162
 105    571  843445
 106    577  669076
 107    587  517671
 108    593  609227
 109    599  633704
 110    601  866713
 111    607  676096
 112    613  657193
 113    617  794421
 114    619  894991
 115    631  440101
 116    641  449185
 117    643  747316
 118    647  793640
 119    653  673934
 120    659  656689
 121    661  881502
 122    673  438065
 123    677  699049
 124    683  649989
 125    691  579297
 126    701  484408
 127    709  518248
 128    719  461765
 129    727  503357
 130    733  585160
 131    739  619697
 132    743  774027
 133    751  594239
 134    757  631679
 135    761  779383
 136    769  597441
 137    773  756587
 138    787  375604
 139    797  405533
 140    809  343311
 141    811  677349
 142    821  485015
 143    823  773652
 144    827  798438
 145    829  893732
 146    839  537224
 147    853  340043
 148    857  606855
 149    859  813837
 150    863  807195
 151    877  378877
 152    881  638598
 153    883  841158
 154    887  813505
 155    907  244026
 156    911  503828
 157    919  497066
 158    929  443645
 159    937  494496
 160    941  691894
 161    947  644162
 162    953  644277
 163    967  367061
 164    971  621546
 165    977  619750
 166    983  634068
 167    991  581393
 168    997  624884
 169   1009  412527
 170   1013  674085
 171   1019  641875
 172   1021  866845
 173   1031  533531
 174   1033  807228
 175   1039  668959
 176   1049  518833
 177   1051  798028
 178   1061  526147
 179   1063  802249
 180   1069  667699
 181   1087  271076
 182   1091  552183
 183   1093  776155
 184   1097  796662
 185   1103  674267
 186   1109  656548
 187   1117  588379
 188   1123  628691
 189   1129  641397
 190   1151  206487
 191   1153  504779
 192   1163  433703
 193   1171  476260
 194   1181  442801
 195   1187  560904
 196   1193  605981
 197   1201  562730
 198   1213  393293
 199   1217  655929
 200   1223  631357
 201   1229  641244
 202   1231  871744
 203   1237  676947
 204   1249  424889
 205   1259  442089
 206   1277  230001
 207   1279  537647
 208   1283  688222
 209   1289  635527
 210   1291  860410
 211   1297  673956
 212   1301  797723
 213   1303  895422
 214   1307  827464
 215   1319  440624
 216   1321  774222
 217   1327  659014
 218   1361   79813
 219   1367  209066
 220   1373  340459
 221   1381  389501
 222   1399  198160
 223   1409  279261
 224   1423  223083
 225   1427  455166
 226   1429  679754
 227   1433  730388
 228   1439  642468
 229   1447  572724
 230   1451  738132
 231   1453  879575
 232   1459  676456
 233   1471  424651
 234   1481  441874
 235   1483  737786
 236   1487  790351
 237   1489  889188
 238   1493  826028
 239   1499  681223
 240   1511  425957
 241   1523  358233
 242   1531  460726
 243   1543  356252
 244   1549  512475
 245   1553  700593
 246   1559  644827
 247   1567  578889
 248   1571  743381
 249   1579  591731
 250   1583  752116
 251   1597  375099
 252   1601  632095
 253   1607  625731
 254   1609  862911
 255   1613  817332
 256   1619  679959
 257   1621  886123
 258   1627  680141
 259   1637  521397
 260   1657  208206
 261   1663  390702
 262   1667  604307
 263   1669  802036
 264   1693  170780
 265   1697  423178
 266   1699  663931
 267   1709  484307
 268   1721  374835
 269   1723  704772
 270   1733  497014
 271   1741  517825
 272   1747  595137
 273   1753  623020
 274   1759  639435
 275   1777  265861
 276   1783  442245
 277   1787  669006
 278   1789  830933
 279   1801  430556
 280   1811  444024
 281   1823  361014
 282   1831  445895
 283   1847  273720
 284   1861  233467
 285   1867  400434
 286   1871  610121
 287   1873  793294
 288   1877  789955
 289   1879  885866
 290   1889  535359
 291   1901  396111
 292   1907  544980
 293   1913  602869
 294   1931  258459
 295   1933  599789
 296   1949  296307
 297   1951  619466
 298   1973  188985
 299   1979  364879
 300   1987  421153
 301   1993  519458
 302   1997  705400
 303   1999  849964
 304   2003  811377
 305   2011  600373
 306   2017  633940
 307   2027  506154
 308   2029  791754
 309   2039  524056
 310   2053  335861
 311   2063  383029
 312   2069  517738
 313   2081  376196
 314   2083  709380
 315   2087  768481
 316   2089  882615
 317   2099  534823
 318   2111  396210
 319   2113  730259
 320   2129  325708
 321   2131  650994
 322   2137  619950
 323   2141  773393
 324   2143  885306
 325   2153  536756
 326   2161  539390
 327   2179  248779
 328   2203  103983
 329   2207  301353
 330   2213  407594
 331   2221  435477
 332   2237  261184
 333   2239  564008
 334   2243  688647
 335   2251  556641
 336   2267  304289
 337   2269  627988
 338   2273  733979
 339   2281  578974
 340   2287  623886
 341   2293  637550
 342   2297  783865
 343   2309  435095
 344   2311  769225
 345   2333  208722
 346   2339  389671
 347   2341  664115
 348   2347  616289
 349   2351  767295
 350   2357  667379
 351   2371  369003
 352   2377  528523
 353   2381  714310
 354   2383  868899
 355   2389  675807
 356   2393  798560
 357   2399  677930
 358   2411  425375
 359   2417  563845
 360   2423  612280
 361   2437  360831
 362   2441  614207
 363   2447  616654
 364   2459  408719
 365   2467  494829
 366   2473  582726
 367   2477  744373
 368   2503  149821
 369   2521  122824
 370   2531  198653
 371   2539  286461
 372   2543  482322
 373   2549  516578
 374   2551  763367
 375   2557  633623
 376   2579  202834
 377   2591  238824
 378   2593  527746
 379   2609  275415
 380   2617  373286
 381   2621  601298
 382   2633  384112
 383   2647  293422
 384   2657  345619
 385   2659  651972
 386   2663  729281
 387   2671  576743
 388   2677  619995
 389   2683  635299
 390   2687  781478
 391   2689  889819
 392   2693  825487
 393   2699  680961
 394   2707  592895
 395   2711  752225
 396   2713  889327
 397   2719  679804
 398   2729  521338
 399   2731  800345
 400   2741  526548
 401   2749  533833
 402   2753  727666
 403   2767  369050
 404   2777  402203
 405   2789  341725
 406   2791  673881
 407   2797  619118
 408   2801  768669
 409   2803  884785
 410   2819  348263
 411   2833  267563
 412   2837  536535
 413   2843  576410
 414   2851  544850
 415   2857  604937
 416   2861  762727
 417   2879  276501
 418   2887  403023
 419   2897  398584
 420   2903  524835
 421   2909  587106
 422   2917  555130
 423   2927  470360
 424   2939  368898
 425   2953  291244
 426   2957  539196
 427   2963  578023
 428   2969  609911
 429   2971  853615
 430   2999  135663
 431   3001  377224
 432   3011  375081
 433   3019  435537
 434   3023  646243
 435   3037  344138
 436   3041  600602
 437   3049  540405
 438   3061  384483
 439   3067  534120
 440   3079  380813
 441   3083  646399
 442   3089  628391
 443   3109  229125
 444   3119  298909
 445   3121  609687
 446   3137  296193
 447   3163   96427
 448   3167  273277
 449   3169  522994
 450   3181  337380
 451   3187  485383
 452   3191  677429
 453   3203  404609
 454   3209  544594
 455   3217  538341
 456   3221  712941
 457   3229  581473
 458   3251  191377
 459   3253  493381
 460   3257  662046
 461   3259  827402
 462   3271  428970
 463   3299  110859
 464   3301  328491
 465   3307  439934
 466   3313  523151
 467   3319  577109
 468   3323  744830
 469   3329  657443
 470   3331  871040
 471   3343  436091
 472   3347  697601
 473   3359  419318
 474   3361  749465
 475   3371  511805
 476   3373  794333
 477   3389  339942
 478   3391  663593
 479   3407  317447
 480   3413  485373
 481   3433  196669
 482   3449  177667
 483   3457  283750
 484   3461  496750
 485   3463  710739
 486   3467  748381
 487   3469  864755
 488   3491  216373
 489   3499  325129
 490   3511  295169
 491   3517  454675
 492   3527  426576
 493   3529  706953
 494   3533  768968
 495   3539  662261
 496   3541  874313
 497   3547  677090
 498   3557  520352
 499   3559  799201
 500   3571  429423
 501   3581  444069
 502   3583  742622
 503   3593  511697
 504   3607  331423
 505   3613  490540
 506   3617  698211
 507   3623  643396
 508   3631  578801
 509   3637  623427
 510   3643  638642
 511   3659  328517
 512   3671  316903
 513   3673  628232
 514   3677  738302
 515   3691  365020
 516   3697  523418
 517   3701  714872
 518   3709  576977
 519   3719  482730
 520   3727  516720
 521   3733  594282
 522   3739  624150
 523   3761  203934
 524   3767  384383
 525   3769  656480
 526   3779  481453
 527   3793  319156
 528   3797  583260
 529   3803  599607
 530   3821  256905
 531   3823  594116
 532   3833  455338
 533   3847  314010
 534   3851  573882
 535   3853  792200
 536   3863  514446
 537   3877  333267
 538   3881  598369
 539   3889  539793
 540   3907  246959
 541   3911  510676
 542   3917  568363
 543   3919  813421
 544   3923  802319
 545   3929  675323
 546   3931  883218
 547   3943  438508
 548   3947  699625
 549   3967  230279
 550   3989  120105
 551   4001  167646
 552   4003  414702
 553   4007  561937
 554   4013  564455
 555   4019  595016
 556   4021  835490
 557   4027  663485
 558   4049  209084
 559   4051  506397
 560   4057  548296
 561   4073  305295
 562   4079  473101
 563   4091  359147
 564   4093  684769
 565   4099  623089
 566   4111  409079
 567   4127  276614
 568   4129  583433
 569   4133  719779
 570   4139  650097
 571   4153  364128
 572   4157  622098
 573   4159  832491
 574   4177  277476
 575   4201  111320
 576   4211  199920
 577   4217  341369
 578   4219  586705
 579   4229  439823
 580   4231  719258
 581   4241  497506
 582   4243  775619
 583   4253  517713
 584   4259  608896
 585   4261  846449
 586   4271  530686
 587   4273  804171
 588   4283  527014
 589   4289  615397
 590   4297  566324
 591   4327   95183
 592   4337  183912
 593   4339  422848
 594   4349  374044
 595   4357  428942
 596   4363  528104
 597   4373  455967
 598   4391  229980
 599   4397  403067
 600   4409  326359
 601   4421  304593
 602   4423  625756
 603   4441  243684
 604   4447  417029
 605   4451  634768
 606   4457  612525
 607   4463  626706
 608   4481  262313
 609   4483  604206
 610   4493  458281
 611   4507  315772
 612   4513  476125
 613   4517  680971
 614   4519  846122
 615   4523  810555
 616   4547  177283
 617   4549  483289
 618   4561  343944
 619   4567  494533
 620   4583  283253
 621   4591  386199
 622   4597  504278
 623   4603  573504
 624   4621  250495
 625   4637  209797
 626   4639  490986
 627   4643  650211
 628   4649  616206
 629   4651  842041
 630   4657  667221
 631   4663  652380
 632   4673  514126
 633   4679  608046
 634   4691  408362
 635   4703  350887
 636   4721  201689
 637   4723  514830
 638   4729  552458
 639   4733  716275
 640   4751  268043
 641   4759  395347
 642   4783  129670
 643   4787  342164
 644   4789  592210
 645   4793  689211
 646   4799  631082
 647   4801  854264
 648   4813  432619
 649   4817  693423
 650   4831  356979
 651   4861   78321
 652   4871  157711
 653   4877  284942
 654   4889  253467
 655   4903  216658
 656   4909  363386
 657   4919  355502
 658   4931  304835
 659   4933  610047
 660   4937  699828
 661   4943  629358
 662   4951  566710
 663   4957  613674
 664   4967  495362
 665   4969  782624
 666   4973  801797
 667   4987  377781
 668   4993  534444
 669   4999  599716
 670   5003  756510
 671   5009  666924
 672   5011  880114
 673   5021  535484
 674   5023  808415
 675   5039  342864
 676   5051  324946
 677   5059  420624
 678   5077  216155
 679   5081  467518
 680   5087  537471
 681   5099  377278
 682   5101  706380
 683   5107  631773
 684   5113  637824
 685   5119  643508
 686   5147  129819
 687   5153  287294
 688   5167  225853
 689   5171  461103
 690   5179  451590
 691   5189  417937
 692   5197  468058
 693   5209  352977
 694   5227  202754
 695   5231  454876
 696   5233  696563
 697   5237  752628
 698   5261  170833
 699   5273  215548
 700   5279  365958
 701   5281  649499
 702   5297  296749
 703   5303  461695
 704   5309  551476
 705   5323  333348
 706   5333  374450
 707   5347  283052
 708   5351  529725
 709   5381   86656
 710   5387  222602
 711   5393  345814
 712   5399  454542
 713   5407  473749
 714   5413  550162
 715   5417  715617
 716   5419  854932
 717   5431  431440
 718   5437  566155
 719   5441  746288
 720   5443  875900
 721   5449  676516
 722   5471  211813
 723   5477  393178
 724   5479  665294
 725   5483  750823
 726   5501  272919
 727   5503  610455
 728   5507  726831
 729   5519  420942
 730   5521  756797
 731   5527  652803
 732   5531  788054
 733   5557  152766
 734   5563  315357
 735   5569  450930
 736   5573  639919
 737   5581  546089
 738   5591  464987
 739   5623   75406
 740   5639   94364
 741   5641  279633
 742   5647  369528
 743   5651  549308
 744   5653  738664
 745   5657  754116
 746   5659  866159
 747   5669  529323
 748   5683  337199
 749   5689  494898
 750   5693  700771
 751   5701  569625
 752   5711  480614
 753   5717  588250
 754   5737  222931
 755   5741  472373
 756   5743  735088
 757   5749  636933
 758   5779   98556
 759   5783  303754
 760   5791  356671
 761   5801  370129
 762   5807  498805
 763   5813  562457
 764   5821  535155
 765   5827  596891
 766   5839  400977
 767   5843  662942
 768   5849  635659
 769   5851  861144
 770   5857  674372
 771   5861  798099
 772   5867  677774
 773   5869  884993
 774   5879  536627
 775   5881  809144
 776   5897  343037
 777   5903  506691
 778   5923  203015
 779   5927  451007
 780   5939  338724
 781   5953  271850
 782   5981   79755
 783   5987  199621
 784   6007  110553
 785   6011  278033
 786   6029  148551
 787   6037  252036
 788   6043  366262
 789   6047  547288
 790   6053  543424
 791   6067  323918
 792   6073  479162
 793   6079  556311
 794   6089  466903
 795   6091  752996
 796   6101  508283
 797   6113  384133
 798   6121  464336
 799   6131  433106
 800   6133  733163
 801   6143  504178
 802   6151  522392
 803   6163  378114
 804   6173  411697
 805   6197  137417
 806   6199  401294
 807   6203  573597
 808   6211  515343
 809   6217  583202
 810   6221  746307
 811   6229  584812
 812   6247  257411
 813   6257  338136
 814   6263  480581
 815   6269  561277
 816   6271  810072
 817   6277  659013
 818   6287  513749
 819   6299  388798
 820   6301  719606
 821   6311  503707
 822   6317  600384
 823   6323  629109
 824   6329  641672
 825   6337  582583
 826   6343  625715
 827   6353  501827
 828   6359  600002
 829   6361  845947
 830   6367  672339
 831   6373  655823
 832   6379  652347
 833   6389  515089
 834   6397  528125
 835   6421  152946
 836   6427  315056
 837   6449  138694
 838   6451  380652
 839   6469  183478
 840   6473  420139
 841   6481  423333
 842   6491  404445
 843   6521   79287
 844   6529  179733
 845   6547  120927
 846   6551  295332
 847   6553  518544
 848   6563  398341
 849   6569  510574
 850   6571  755422
 851   6577  631520
 852   6581  767546
 853   6599  275786
 854   6607  400963
 855   6619  331026
 856   6637  193913
 857   6653  175197
 858   6659  326081
 859   6661  587931
 860   6673  360583
 861   6679  503414
 862   6689  449629
 863   6691  732055
 864   6701  504185
 865   6703  782017
 866   6709  658984
 867   6719  514820
 868   6733  330626
 869   6737  598769
 870   6761  155922
 871   6763  444468
 872   6779  247825
 873   6781  552518
 874   6791  441278
 875   6793  727156
 876   6803  501444
 877   6823  202920
 878   6827  457719
 879   6829  715507
 880   6833  758735
 881   6841  587145
 882   6857  313259
 883   6863  477205
 884   6869  570412
 885   6871  819870
 886   6883  428021
 887   6899  284549
 888   6907  387801
 889   6911  620493
 890   6917  611911
 891   6947   96715
 892   6949  333305
 893   6959  328100
 894   6961  620277
 895   6967  589051
 896   6971  742396
 897   6977  655567
 898   6983  647537
 899   6991  584163
 900   6997  626478
 901   7001  774720
 902   7013  432865
 903   7019  569419
 904   7027  554772
 905   7039  392107
 906   7043  652035
 907   7057  350636
 908   7069  327327
 909   7079  373455
 910   7103  127442
 911   7109  274851
 912   7121  257577
 913   7127  406696
 914   7129  676893
 915   7151  190092
 916   7159  298240
 917   7177  177273
 918   7187  259746
 919   7193  396678
 920   7207  267741
 921   7211  507210
 922   7213  727592
 923   7219  620679
 924   7229  495545
 925   7237  515224
 926   7243  589911
 927   7247  756526
 928   7253  663797
 929   7283  100673
 930   7297  136380
 931   7307  202696
 932   7309  456225
 933   7321  311782
 934   7331  350593
 935   7333  637481
 936   7349  299132
 937   7351  609703
 938   7369  243694
 939   7393  101571
 940   7411   92086
 941   7417  209683
 942   7433  159480
 943   7451  115373
 944   7457  237882
 945   7459  458353
 946   7477  190972
 947   7481  419437
 948   7487  485089
 949   7489  718144
 950   7499  482623
 951   7507  500708
 952   7517  450680
 953   7523  562536
 954   7529  604751
 955   7537  560954
 956   7541  731018
 957   7547  657245
 958   7549  874039
 959   7559  533420
 960   7561  806029
 961   7573  431111
 962   7577  693945
 963   7583  647800
 964   7589  648250
 965   7591  874560
 966   7603  437384
 967   7607  698495
 968   7621  358362
 969   7639  209942
 970   7643  462514
 971   7649  532784
 972   7669  209623
 973   7673  449842
 974   7681  465751
 975   7687  557140
 976   7691  723945
 977   7699  578417
 978   7703  742997
 979   7717  372437
 980   7723  529536
 981   7727  718094
 982   7741  366036
 983   7753  335167
 984   7757  586816
 985   7759  805664
 986   7789  101290
 987   7793  310708
 988   7817  107529
 989   7823  238258
 990   7829  362089
 991   7841  294758
 992   7853  276436
 993   7867  237917
 994   7873  388145
 995   7877  587133
 996   7879  770904
 997   7883  770281
 998   7901  273698
 999   7907  450006
1000   7919  350255
1001   7927  447230
1002   7933  548613
1003   7937  718802
1004   7949  417802
1005   7951  753233
1006   7963  419300
1007   7993   83831
1008   8009  107456
1009   8011  299059
1010   8017  386665
1011   8039  149072
1012   8053  154876
1013   8059  291640
1014   8069  314601
1015   8081  278252
1016   8087  422275
1017   8089  677719
1018   8093  725639
1019   8101  564015
1020   8111  474186
1021   8117  580411
1022   8123  614559
1023   8147  162735
1024   8161  184935
1025   8167  335236
1026   8171  539215
1027   8179  495718
1028   8191  362521
1029   8209  204301
1030   8219  291170
1031   8221  567386
1032   8231  444250
1033   8233  727774
1034   8237  773312
1035   8243  663068
1036   8263  235989
1037   8269  417567
1038   8273  619215
1039   8287  342851
1040   8291  598860
1041   8293  814501
1042   8297  801132
1043   8311  378146
1044   8317  534439
1045   8329  383350
1046   8353  134075
1047   8363  224221
1048   8369  368955
1049   8377  412013
1050   8387  394147
1051   8389  680917
1052   8419   93879
1053   8423  293000
1054   8429  408254
1055   8431  662652
1056   8443  385953
1057   8447  646304
1058   8461  341841
1059   8467  504484
1060   8501   69186
1061   8513  116949
1062   8521  202233
1063   8527  315343
1064   8537  321914
1065   8539  585546
1066   8543  680144
1067   8563  219319
1068   8573  287906
1069   8581  387302
1070   8597  244204
1071   8599  542087
1072   8609  433592
1073   8623  297926
1074   8627  552710
1075   8629  770476
1076   8641  415269
1077   8647  554279
1078   8663  306473
1079   8669  475503
1080   8677  489320
1081   8681  691717
1082   8689  567613
1083   8693  738977
1084   8699  661015
1085   8707  586511
1086   8713  627340
1087   8719  640503
1088   8731  417157
1089   8737  558055
1090   8741  744102
1091   8747  663209
1092   8753  652517
1093   8761  586277
1094   8779  258670
1095   8783  523790
1096   8803  200263
1097   8807  446712
1098   8819  335205
1099   8821  658715
1100   8831  475262
1101   8837  579208
1102   8839  828177
1103   8849  524644
1104   8861  391986
1105   8863  725742
1106   8867  781045
1107   8887  240885
1108   8893  422612
1109   8923   80478
1110   8929  208909
1111   8933  409046
1112   8941  416152
1113   8951  393585
1114   8963  325890
1115   8969  479337
1116   8971  747736
1117   8999  127243
1118   9001  360626
1119   9007  464505
1120   9011  660889
1121   9013  818627
1122   9029  337805
1123   9041  320627
1124   9043  629664
1125   9049  607921
1126   9059  494063
1127   9067  516754
1128   9091  150623
1129   9103  198792
1130   9109  346340
1131   9127  185103
1132   9133  341617
1133   9137  558076
1134   9151  310334
1135   9157  467711
1136   9161  665337
1137   9173  401783
1138   9181  480776
1139   9187  571163
1140   9199  393381
1141   9203  652871
1142   9209  630918
1143   9221  411875
1144   9227  553895
1145   9239  387908
1146   9241  731940
1147   9257  323508
1148   9277  166449
1149   9281  398003
1150   9283  651804
1151   9293  470813
1152   9311  234415
1153   9319  358320
1154   9323  573906
1155   9337  328114
1156   9341  581934
1157   9343  798460
1158   9349  656105
1159   9371  207995
1160   9377  388085
1161   9391  271152
1162   9397  437220
1163   9403  530335
1164   9413  458656
1165   9419  567130
1166   9421  815835
1167   9431  522055
1168   9433  796818
1169   9437  809480
1170   9439  896807
1171   9461  220160
1172   9463  526660
1173   9467  691318
1174   9473  640024
1175   9479  642888
1176   9491  417162
1177   9497  557734
1178   9511  344895
1179   9521  380990
1180   9533  331294
1181   9539  485629
1182   9547  508534
1183   9551  691160
1184   9587   63385
1185   9601   95979
1186   9613  130162
1187   9619  247563
1188   9623  418077
1189   9629  464520
1190   9631  708552
1191   9643  389335
1192   9649  529232
1193   9661  374089
1194   9677  261811
1195   9679  562329
1196   9689  453557
1197   9697  488792
1198   9719  176513
1199   9721  459824
1200   9733  333283
1201   9739  482070
1202   9743  683872
1203   9749  633336
1204   9767  263156
1205   9769  602146
1206   9781  381785
1207   9787  531735
1208   9791  718107
1209   9803  419918
1210   9811  495878
1211   9817  583689
1212   9829  399246
1213   9833  659599
1214   9839  635254
1215   9851  413756
1216   9857  555795
1217   9859  826057
1218   9871  429932
1219   9883  362286
1220   9887  633945
1221   9901  341356
1222   9907  506371
1223   9923  290652
1224   9929  457519
1225   9931  736097
1226   9941  501827
1227   9949  519633
1228   9967  243664
1229   9973  418661
1230  10007   63093
1231  10009  226219
1232  10037   64385
1233  10039  212523
1234  10061   96217
1235  10067  212622
(...)
2684  24109  889952
:727 113173  889409
For these k, the first n primes are preceding generalized maximal gaps pn+k-pn:
Code:
  n  k
  2  1
  3  2
  4  6
  5  12
  6  19
  7  97
  8  70
  9  120
 10  88
 11  119
 12  237
 13  68
 14  681
 15  412
 16  1591
 17  2907
 18  1510
 19  2734
 20  2131
 21  1588
 22  3834
 23  6041
 24  2897
 25  11562
 26  21004
 27  11560
 28  44194
 29  21001
 30  11557
 31  25174
 32  32114
 33  131271
 34  36918
 35  44636
 36  115242
 37  211442
 38  477957
 39  64935
 40  204412
 41  710665
 42  175930
 43  438049
 44  409641
 45  725804
 46  176350
 47  560510
 48  2570641
 49  2841381
 50  4094784
 51  1063896
 52  4355669
 53  1807346
 54  2070798
 55  2349691
 56  6380527
 57  6563887
 58  6276812
 59  14215737
 60  8543349
 61  2899899
 62  7714640
 63  19264207
 64  15644556
 65  13668980
 66  10701209
 67  24451150
 68  13668996
 69  38417236
 70  33907310
 71  25958214
 72  37376935
 73  72210305
 74  51624533
 75  155807588
 76  121101282
 77  72019160
 78  199395703
 79  34335444
 80  80104183
 81  575130837
 82  273221126
 83  362546538
 84  478749161
 85  209832527
 86  92967699
 87  251653222
 90  833367050
 91  566487675
 92  212341969
 93  838711510
 94  394795699
 97  457331290
 99  864115614
107  834990586

Search limit: k=9e8
And now for the cherry on top of it:
For 25698372294281 <= p <= 25698372297167 there are 144 values of k with 302 <= k <= 445 for which a new CSG maximum is > 1, with the largest instance at p = 25698372297029, k = 316, CSG = 1.09729237...

Ah, the fun we have

Last fiddled with by mart_r on 2022-04-22 at 17:23 Reason: sopyt gnixif
mart_r is offline   Reply With Quote
Old 2022-04-23, 15:59   #42
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

15678 Posts
Default

Quote:
Originally Posted by mart_r View Post
Relocate focus?
That's what. You know, even though I don't get many replies, it helps that I share my ideas here as it puts more pressure on me to think things through more thoroughly (try saying that five times fast:), beneath all my rampant numerology.

Quote:
Originally Posted by Bobby Jacobs View Post
I believe that as \(n\to\infty\), the primes p with the most occurrences will be based upon a lot of small prime gaps immediately before p. Therefore, 5659 should eventually beat 109 because the 5 prime gaps before 5659 are 6, 4, 2, 4, 2, but the 5 prime gaps before 109 are 8, 4, 2, 4, 2.
That seems to be right after all - I stand corrected. Those "high performer" primes preceding maximal gaps depend primarily on the small gaps right before them. I can see it now - it might be well out of reach for an actual computation, but on an asymptotic scale, 5659, being the last member of a prime-septuplet, does have a good chance to beat 109 sometime.
mart_r is offline   Reply With Quote
Old 2022-04-25, 19:08   #43
Bobby Jacobs
 
Bobby Jacobs's Avatar
 
May 2018

2·3·72 Posts
Default

What is the pattern with the sequence of primes with record low numbers of occurrences? It seems like the sequence is 2, 5, 11, 29, 37, 59, 97, 127, 223, 307, 541, 907, 1151, 1361, ... This is similar to the primes at the end of maximal prime gaps, but not exactly. I wonder what the pattern is.
Bobby Jacobs is offline   Reply With Quote
Old 2022-04-26, 09:18   #44
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

88710 Posts
Default

Me too
At first sight, 37 should occur more often than 29 because the two gaps preceding 37 are {2, 6} instead of {4, 6} for 29. If however we take three gaps before the prime into account, it's {6, 2, 6} vs. {2, 4, 6}. The {2, 4, 6}-pattern having more open residues mod 5 also plays a role, favoring 37 as a local record minimum in number of occurrences. Now, at what margin remains 37 below 29?

Last fiddled with by mart_r on 2022-04-26 at 09:27 Reason: little less verbiage
mart_r is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Patterns in primes that are primitive roots / Gaps in full-reptend primes mart_r Prime Gap Searches 14 2020-06-30 12:42
triples of consecutive primes enzocreti enzocreti 0 2019-03-28 13:45
Largest Known Pair of Consecutive Primes a1call Information & Answers 8 2017-02-06 17:30
Unexpected biases in the distribution of consecutive primes axn Lounge 21 2016-06-05 13:00
k's with consecutive small primes gd_barnes Riesel Prime Search 1 2007-07-30 23:26

All times are UTC. The time now is 23:08.


Tue Jun 6 23:08:36 UTC 2023 up 292 days, 20:37, 0 users, load averages: 0.81, 0.92, 0.91

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔