mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > Factoring

Reply
 
Thread Tools
Old 2013-07-21, 10:41   #353
prgamma10
 
prgamma10's Avatar
 
Jan 2013

11011012 Posts
Default

Quote:
Originally Posted by swishzzz View Post
How do I find the group order for this factorization? factordb's group order calculator clearly fails for this one...
sigma 1:<something> is not a Brent-Suyama curve, and Factordb up to now only supports Brent-Suyama curves (sigma 0:<something>).

Tried some Magma code, based on the GMP-ECM manual: (won't work, and I have no idea why)
Code:
FindGroupOrder := function (p, s)
   K := GF(p);
   A := K ! (4*s^2-2);
   x := 2;
   b := x^3 + A*x^2 + x;
   E := EllipticCurve([0,b*A,0,b^2,0]);
   return FactoredOrder(E);
end function;

p := 26759964491830480636236398774973830719679139755537527;
s := 3576746370;
FindGroupOrder(p,s);

Last fiddled with by prgamma10 on 2013-07-21 at 10:43
prgamma10 is offline   Reply With Quote
Old 2013-10-09, 17:48   #354
maxal
 
maxal's Avatar
 
Feb 2005

25210 Posts
Default

I've just got factorization of 102^103 + 1 = 103^2 * prp74 * prp130 with SNFS:
Code:
prp74 factor: 16577923085747542727498881886756397313868752518022676502052070512564532587
prp130 factor: 4371325251720559422253332573045929417056159075217221344318685656228760863793509418168865967108430523971884258595890393501349300723
maxal is offline   Reply With Quote
Old 2013-10-27, 16:43   #355
YuL
 
YuL's Avatar
 
Feb 2012
Paris, France

16110 Posts
Default

A P58 I've found by ECM last week (which broke my previous personal record):
Code:
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (3*10^204+7)/(2111*12379*80141*360193*36529453*83762087274812203759) (160 digits)
Using B1=260000000, B2=3178559884516, polynomial Dickson(30), sigma=2078429522
Step 1 took 1093707ms
Step 2 took 363420ms
********** Factor found in step 2: 4269986142493572515510539041322472993083083125849142037361
Found probable prime factor of 58 digits: 4269986142493572515510539041322472993083083125849142037361 
Probable prime cofactor ((3*10^204+7)/(2111*12379*80141*360193*36529453*83762087274812203759))/4269986142493572515510539041322472993083083125849142037361 has 102 digits
Details here.


A P53 found by ECM in step 1 (details here):
Code:
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (26*10^238-17)/(9*3*31*17914895525348997871953180891109) (206 digits)
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=4255384633
Step 1 took 648620ms
********** Factor found in step 1: 77799771931273889262077139536983524215512156277756839
Found probable prime factor of 53 digits: 77799771931273889262077139536983524215512156277756839
Probable prime cofactor ((26*10^238-17)/(9*3*31*17914895525348997871953180891109))/77799771931273889262077139536983524215512156277756839 has 153 digits
YuL is offline   Reply With Quote
Old 2013-11-11, 17:21   #356
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

22·2,333 Posts
Default

Code:
Msieve v. 1.52 (SVN 886M)
Mon Nov 11 01:03:57 2013
random seeds: 187198dc e395e0be
factoring   9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999  (253 digits)
...initial square root is modulo 4585129
sqrtTime: 7150
p117  factor:  211857628677636264166676902114066256198845941934180788645905936104472665184004014226679863567582409810768749673482061
p137  factor:  47201510100993602326827859852217555163129145401663287219390072454758015933440888931227171966024510895342063068118093723212737563878094459
Batalov is offline   Reply With Quote
Old 2013-11-11, 19:03   #357
YuL
 
YuL's Avatar
 
Feb 2012
Paris, France

A116 Posts
Default

Code:
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (10^248+3)/(19*223*126165718229274337) (228 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3741404180
Step 1 took 20467ms
Step 2 took 9969ms
********** Factor found in step 2: 16031381961952347637116191005607843989279
Found probable prime factor of 41 digits: 16031381961952347637116191005607843989279
Composite cofactor ((10^248+3)/(19*223*126165718229274337))/16031381961952347637116191005607843989279 has 188 digits
Group order: 2^3 · 3^2 · 5 · 7 · 19^3 · 163 · 1307 · 1487 · 120163 · 134639 · 2337983 · 77402051

Code:
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM]
Input number is (10^248+3)/(19*223*126165718229274337*16031381961952347637116191005607843989279) (188 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1601899263
Step 1 took 14883ms
Step 2 took 8283ms
********** Factor found in step 2: 12824921391934305400334065366552991673187
Found probable prime factor of 41 digits: 12824921391934305400334065366552991673187
Probable prime cofactor ((10^248+3)/(19*223*126165718229274337*16031381961952347637116191005607843989279))/12824921391934305400334065366552991673187 has 147 digits
Group order: 2^10 · 3^2 · 7 · 13 · 521 · 757 · 5209 · 9883 · 74699 · 2923747 · 3448573771
YuL is offline   Reply With Quote
Old 2013-11-11, 19:08   #358
YuL
 
YuL's Avatar
 
Feb 2012
Paris, France

101000012 Posts
Default

Quote:
Originally Posted by Batalov View Post
Code:
Msieve v. 1.52 (SVN 886M)
Mon Nov 11 01:03:57 2013
random seeds: 187198dc e395e0be
factoring   9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999  (253 digits)
...initial square root is modulo 4585129
sqrtTime: 7150
p117  factor:  211857628677636264166676902114066256198845941934180788645905936104472665184004014226679863567582409810768749673482061
p137  factor:  47201510100993602326827859852217555163129145401663287219390072454758015933440888931227171966024510895342063068118093723212737563878094459
Impressive. How long did it take? How much processing power?
YuL is offline   Reply With Quote
Old 2013-11-11, 23:29   #359
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

933210 Posts
Default

It was about 25 thousand hours for sieving, two hrs for filtering, 24 hours LA (on an 4x8 MPI grid), and two hours per sqrt.
Batalov is offline   Reply With Quote
Old 2014-01-02, 09:07   #360
fivemack
(loop (#_fork))
 
fivemack's Avatar
 
Feb 2006
Cambridge, England

18EE16 Posts
Default Further exploration of pointless places

I ran 480 curves at 1e7 on {60..79}^512+1 over Christmas

No complete factorisations; a couple of new factors of interest:
Code:
e62:Found probable prime factor of 30 digits: 415279119367083281900859703297
e77:Found probable prime factor of 33 digits: 341126180420063151380968669975553
e65:Found probable prime factor of 37 digits: 1869269849997935174077690896845848577
e75:Found probable prime factor of 38 digits: 13734192372070026415774074593138282497
e65:Found probable prime factor of 43 digits: 4769997756860644904012186212092431977208833
This was clearly untouched ground, I found a ten-digit factor of 79^512+1 that wasn't in factordb.
fivemack is offline   Reply With Quote
Old 2014-01-17, 09:50   #361
kar_bon
 
kar_bon's Avatar
 
Mar 2006
Germany

2×1,439 Posts
Default Reverse Smarandache numbers

Hi,

the last days I've factored 2 Reverse Smarandache type numbers for n=103 and n=104.

RSm(103).C160 = P53 * P108

Running yafu over night:
prp53 = 22633393225636817509048253413614523936779379142819839 (curve 50 stg2 B1=260000000 sigma=4172026601 thread=1)
Finished 400 curves using Lenstra ECM method on C160 input, B1=260M, B2=gmp-ecm Default

RSm(104).C149 = P52 * P97

Running msieve:
total time: 85.26 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
processors: 8, speed: 3.39GHz
Windows-7-6.1.7601-SP1
Running Python 2.7

Both reported to World of numbers.
Also shown on my page.
kar_bon is offline   Reply With Quote
Old 2014-02-04, 09:29   #362
kar_bon
 
kar_bon's Avatar
 
Mar 2006
Germany

2×1,439 Posts
Default

Reverse Smarandache for n=105, C156 factored in:

r1=505609049620430043564818948424594740095377638674786008583783558052966689 (pp72)
r2=1460218912197798897796479876892816487811802580775089126778648005904642208642833062339 (pp85)
kar_bon is offline   Reply With Quote
Old 2014-02-15, 18:27   #363
sean
 
sean's Avatar
 
Aug 2004
New Zealand

110111102 Posts
Default

rSm(106) C167 is factored

Code:
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 18177692096553830368675737725463580456289708131712261558393850692666532966863437168425047460718124572874681287411912149791448198810931545176347119222043777538034560927 (167 digits)
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=2318285213
Step 1 took 434355ms
Step 2 took 41233ms
********** Factor found in step 2: 414338872062791501547344020582712133249557
Found probable prime factor of 42 digits: 414338872062791501547344020582712133249557
Probable prime cofactor 43871558577296772025736976053227175068325706197701002055248304277569975777948248915189631633909304741312836729962564905149411 has 125 digits
sean is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Gratuitous OPN factors wblipp Factoring 463 2019-05-30 07:19
Ungracious Factors Thread FactorEyes Factoring 2 2011-04-09 05:45
Missing factors at the 'Known Factors' page MatWur-S530113 PrimeNet 11 2009-01-21 19:08
JasonG's gratuitous C++ thread jasong Programming 16 2006-11-07 01:03
Gratuitous hardware-related banana thread GP2 Hardware 7 2003-11-24 06:13

All times are UTC. The time now is 14:16.

Fri Mar 5 14:16:16 UTC 2021 up 92 days, 10:27, 0 users, load averages: 2.87, 2.65, 2.69

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.