![]() |
![]() |
#1 |
"Ed Hall"
Dec 2009
Adirondack Mtns
10101001010002 Posts |
![]()
This thread will list sequences which are open at index 1, of interest to the Aliquot sequences that start on the integer powers n^i thread. I will attempt to keep this list updated by removing those that have moved past index 1 and for any additional bases added to the tables.
Note 1: With the exception of bases 106, 108 and 110 with cofactors <166 digits, all cofactors will have had ECM to t50. Note 2: An asterisk denotes a reservation. The original list contained 747 entries. The current list has 106: Code:
18^135: 170/164/3 26^116: 165/157/5 28^113: 164/157/2^3 34^107: 164/161/2^2 39^106: 169/160/2 57^95: 167/161/3 60^96: 172/163/7 62^96: 173/158/3 65^89: 161/155/179 68^92: 169/161/3 68^97: 178/170/2 68^99: 182/157/2^2 70^89: 165/162/2^4 72^98: 183/178/17^2 74^97: 182/169/2 74^98: 184/178/226937 76^95: 179/173/2^6 77^89: 168/163/7 77^97: 183/175/19^2 78^91: 173/167/2^5 78^94: 179/171/4973 78^97: 184/170/2^3 78^98: 186/184/3^2 78^99: 188/176/2^5 80^92: 176/159/3^2 84^89: 172/162/2^5 84^94: 182/178/5 84^100: 193/158/5^3 86^95: 184/178/2^6 86^99: 192/189/2^3 87^96: 186/176/2^5 87^100: 194/173/2^2 88^95: 185/167/2^6 90^95: 187/163/2^5 91^91: 178/169/3 91^95: 186/165/7 91^96: 188/163/2^5 91^97: 190/175/3^3 92^97: 191/182/2^3 93^93: 183/162/127 94^83: 164/157/2^5 94^91: 180/172/2^5 94^92: 182/170/3 94^96: 190/167/3^2 94^97: 192/164/2^4 94^99: 196/164/2^5 95^94: 186/186/2 95^96: 190/175/2^5 95^99: 196/180/5^3 96^86: 171/166/5^2 96^98: 195/170/5 98^98: 196/179/7 99^86: 172/170/2^2 99^98: 196/178/2^2 99^99: 198/181/3 102^85: 172/165/2^3 102^92: 186/183/5^2 105^86: 174/174/2 105^90: 182/156/2 105^94: 191/162/2 106^79: 161/156/2^4 106^90: 183/157/3^3 108^89: 182/168/2^3 110^93: 191/153/2^3 110^94: 193/183/3 111^86: 176/157/2 111^88: 180/162/2^3 111^90: 184/164/2 111^94: 192/164/2 111^95: 195/189/3 112^94: 193/152/55547 119^80: 166/157/2^4 119^88: 183/166/2^3 119^94: 195/181/2 120^83: 174/163/2^5 120^85: 178/158/2^3 120^90: 188/166/7^2 120^95: 198/182/2^11 162^85: 189/183/3 162^86: 191/156/431 162^87: 193/166/3 162^89: 197/167/3^3 162^90: 200/184/7^2 173^83: 184/162/167 193^83: 188/176/28387 220^80: 188/170/3 229^79: 185/181/2371 231^69: 164/160/3 231^76: 180/164/2^4 276^69: 169/157/2^5 882^55: 163/156/3^2 882^59: 175/168/3^2 888^59: 175/159/2^5 888^60: 178/165/5^2 996^59: 178/164/2^6 999^57: 171/169/229 999^59: 177/173/3 14264^40: 167/159/5^2 31704^38: 172/171/3 47616^36: 169/162/7^2 1305184^30: 184/180/3^2 1727636^27: 169/155/2^4 6469693230^16: 158/156/283 6469693230^18: 178/166/47 8589869056^19: 189/162/2^18 8589869056^20: 199/168/5 Code:
112^94: 193/152/55547 110^93: 191/153/2^3 65^89: 161/155/179 1727636^27: 169/155/2^4 105^90: 182/156/2 106^79: 161/156/2^4 162^86: 191/156/431 882^55: 163/156/3^2 6469693230^16: 158/156/283 26^116: 165/157/5 28^113: 164/157/2^3 68^99: 182/157/2^2 94^83: 164/157/2^5 106^90: 183/157/3^3 111^86: 176/157/2 119^80: 166/157/2^4 276^69: 169/157/2^5 62^96: 173/158/3 84^100: 193/158/5^3 120^85: 178/158/2^3 80^92: 176/159/3^2 888^59: 175/159/2^5 14264^40: 167/159/5^2 39^106: 169/160/2 231^69: 164/160/3 34^107: 164/161/2^2 57^95: 167/161/3 68^92: 169/161/3 70^89: 165/162/2^4 84^89: 172/162/2^5 93^93: 183/162/127 105^94: 191/162/2 111^88: 180/162/2^3 173^83: 184/162/167 47616^36: 169/162/7^2 8589869056^19: 189/162/2^18 60^96: 172/163/7 77^89: 168/163/7 90^95: 187/163/2^5 91^96: 188/163/2^5 120^83: 174/163/2^5 18^135: 170/164/3 94^97: 192/164/2^4 94^99: 196/164/2^5 111^90: 184/164/2 111^94: 192/164/2 231^76: 180/164/2^4 996^59: 178/164/2^6 91^95: 186/165/7 102^85: 172/165/2^3 888^60: 178/165/5^2 96^86: 171/166/5^2 119^88: 183/166/2^3 120^90: 188/166/7^2 162^87: 193/166/3 6469693230^18: 178/166/47 78^91: 173/167/2^5 88^95: 185/167/2^6 94^96: 190/167/3^2 162^89: 197/167/3^3 108^89: 182/168/2^3 882^59: 175/168/3^2 8589869056^20: 199/168/5 74^97: 182/169/2 91^91: 178/169/3 999^57: 171/169/229 68^97: 178/170/2 78^97: 184/170/2^3 94^92: 182/170/3 96^98: 195/170/5 99^86: 172/170/2^2 220^80: 188/170/3 78^94: 179/171/4973 31704^38: 172/171/3 94^91: 180/172/2^5 76^95: 179/173/2^6 87^100: 194/173/2^2 999^59: 177/173/3 105^86: 174/174/2 77^97: 183/175/19^2 91^97: 190/175/3^3 95^96: 190/175/2^5 78^99: 188/176/2^5 87^96: 186/176/2^5 193^83: 188/176/28387 72^98: 183/178/17^2 74^98: 184/178/226937 84^94: 182/178/5 86^95: 184/178/2^6 99^98: 196/178/2^2 98^98: 196/179/7 95^99: 196/180/5^3 1305184^30: 184/180/3^2 99^99: 198/181/3 119^94: 195/181/2 229^79: 185/181/2371 92^97: 191/182/2^3 120^95: 198/182/2^11 102^92: 186/183/5^2 110^94: 193/183/3 162^85: 189/183/3 78^98: 186/184/3^2 162^90: 200/184/7^2 95^94: 186/186/2 86^99: 192/189/2^3 111^95: 195/189/3 Last fiddled with by EdH on 2023-03-16 at 02:08 Reason: Ongoing updates to this list. |
![]() |
![]() |
![]() |
#2 |
Mar 2006
Germany
13×233 Posts |
![]()
Here's a list of seqs where only index 1 exists unfactored (not all current bases included, I got not all data of them right now) sorted by digit-length of unfactored part.
Code:
base n digits last unfacored part 34 105 161 110 2 * 5^3 * 24337 * 271501 * 26924428544021<14> * 92008502963553099400264483<26> * 1755843760...13<110> 120 63 132 115 2^13 * 3^2 * 5 * 61 * 34157 * 225601 * 1545247900...69<115> 24 97 135 115 2^2 * 3 * 29 * 199757004571921649<18> * 2184938316...53<115> 120 59 124 117 2^5 * 3^3 * 5^2 * 89 * 6717109883...47<117> 40 93 150 121 2 * 5^2 * 330976988302517290350862631<27> * 8890018165...01<121> 33 102 155 123 2^5 * 5 * 7 * 17 * 103 * 2371 * 408263 * 117101917 * 555782489 * 4069027405...63<123> 34 103 158 124 2^3 * 17 * 3299 * 58235400281779469774089675573<29> * 2378880842...93<124> 6 207 162 125 2^5 * 3 * 47 * 71 * 46769 * 2446357 * 239072218310985716299<21> * 2727120672...71<125> 24 95 132 127 2^6 * 3 * 191 * 7190570725...73<127> 220 76 179 131 3 * 37 * 196279 * 67633937857<11> * 214459095879211<15> * 4799858808865997<16> * 1219627949...57<131> 44 100 165 131 3^2 * 5^2 * 23 * 101 * 32193812086790437631591111071<29> * 1579227732...87<131> 120 69 144 134 2^3 * 3^2 * 5 * 87957781 * 2525003043...17<134> 33 105 160 134 3 * 421 * 36045147435185766110239<23> * 3968504590...63<134> 40 102 164 134 3^2 * 7 * 41 * 103 * 5048627 * 314281766178184019<18> * 9136003830...01<134> 44 95 157 135 2^6 * 71 * 84651443 * 21539843947<11> * 1944779067...37<135> 48 96 162 135 5^2 * 7 * 13 * 17 * 97 * 193 * 769 * 2240847267821093<16> * 4018748438...97<135> 120 67 140 136 2^5 * 3^2 * 5 * 11 * 3505266172...51<136> 34 108 166 136 3^4 * 5 * 7^2 * 11 * 13 * 19 * 37 * 109 * 24677 * 82427907020617<14> * 6384692207...19<136> 33 107 163 137 3^4 * 89 * 1439 * 132913999 * 36989255297<11> * 3857649728...71<137> 15 138 163 140 2 * 7 * 19 * 47 * 73 * 139 * 730752899295673<15> * 1885880199...29<140> 44 85 140 140 2^2 * 1481149021...67<140> 33 108 164 140 2^5 * 7 * 13 * 19 * 37 * 109 * 5616915816027937<16> * 5180214640...51<140> 38 108 171 140 3^3 * 5 * 7 * 13 * 37 * 73 * 109 * 463 * 2295981521<10> * 10194514709<11> * 1172583411...77<140> 38 99 157 141 2^3 * 28702903 * 61812479 * 1959934618...63<141> 44 87 144 141 2^4 * 7^2 * 1463012503...63<141> 15 130 153 142 2 * 7 * 11 * 131 * 239 * 52453 * 2697189625...61<142> 45 100 166 142 2^2 * 11 * 41 * 101 * 1889593228067850677<19> * 5325166603...57<142> 48 99 167 142 2^3 * 13 * 23 * 15750739 * 747779965444163<15> * 1968233231...77<142> 6 189 148 143 2^2 * 3 * 3697 * 5303781468...79<143> 33 109 166 143 3 * 11^3 * 21743882030832718199<20> * 2467723006...41<143> 48 95 161 144 2^6 * 11 * 83 * 191 * 7488935269<10> * 1249808145...51<144> 42 99 162 144 2^7 * 3 * 43 * 5179 * 16369 * 225263 * 3988982717...87<144> 35 105 162 144 31 * 349 * 49081 * 57881 * 76651 * 2607184262...97<144> 38 104 165 144 5 * 17^2 * 53 * 13745578568661659<17> * 2093846293...17<144> 45 98 162 145 2 * 29 * 6310812936808511<16> * 2473552328...97<145> 46 97 162 146 2^3 * 13 * 77001190768501<14> * 2640994236...69<146> 40 103 166 146 2^3 * 3185298850077608111<19> * 6053829621...51<146> 40 98 158 146 3 * 2609 * 30219437 * 6369256022...23<146> 33 98 149 147 2^7 * 3311841127...71<147> 220 70 165 147 3 * 71 * 2113 * 49019 * 11511961 * 6424404073...31<147> 220 65 153 148 2^3 * 131 * 239 * 1264017592...71<148> 46 96 160 148 3^3 * 5 * 7 * 13 * 17^3 * 97 * 193 * 4069016342...43<148> 120 73 153 149 2^3 * 3^2 * 5^2 * 9210668463...61<149> 35 98 151 150 2 * 29 * 1645969548...99<150> 33 106 161 150 2^6 * 107 * 9203969 * 9459149398...01<150> 40 106 170 150 3 * 59 * 107 * 1997 * 2929612792817<13> * 8910560176...27<150> 12 145 157 151 2^2 * 11 * 59 * 401 * 5819177598...31<151> 48 93 157 151 2^2 * 13 * 21149 * 4122606567...57<151> 40 107 172 152 2^2 * 33653625670800050957<20> * 2933718773...31<152> 220 67 158 152 2^5 * 41777 * 1146226474...39<152> 39 99 158 152 23 * 31 * 313 * 9175764223...89<152> 6 209 163 154 2^2 * 3^2 * 23 * 59 * 199 * 379 * 2334891429...43<154> 220 69 162 154 2^3 * 5 * 11 * 139 * 4229 * 2867463269...31<154> 34 104 160 154 3 * 5 * 53 * 353 * 7530400262...01<154> 44 99 163 159 2^3 * 7^2 * 19 * 8108799278...27<159> 48 97 164 160 2^2 * 2129 * 2826144531...91<160> 34 107 164 161 2^2 * 491 * 4229170191...79<161> 220 78 183 162 3^2 * 7 * 79 * 151 * 11369 * 564511026839<12> * 1856384222...77<162> 120 80 167 163 11 * 17 * 41 * 7748308687...93<163> 220 73 172 163 2^3 * 3659 * 17257 * 3439347463...77<163> 220 77 181 166 2^3 * 29 * 1765990895203<13> * 9933631079...21<166> 220 75 176 166 2^5 * 151 * 10573061 * 1645930325...41<166> 220 79 186 181 2^9 * 5 * 11 * 6995152439...81<181> 220 80 188 185 3 * 17 * 41 * 2072518813...21<185> Replace the line Code:
if ($3==1) # index only 1 |
![]() |
![]() |
![]() |
#3 |
"Garambois Jean-Luc"
Oct 2011
France
100100000002 Posts |
![]()
Here is the list proposed by Karsten (thanks to him) obtained with the updated files of seqs where only index 1 exists unfactored sorted by bases (There are so many of them !) :
Code:
Base exp digits cofactor size 10 149 150 149 10 157 158 149 102 65 131 112 102 73 147 125 102 77 156 120 102 81 164 130 102 82 166 128 102 83 168 154 102 85 172 165 102 86 174 162 102 91 184 170 102 92 186 183 102 93 188 182 102 95 192 173 104 67 136 110 104 71 144 115 104 79 160 159 104 84 170 137 104 90 182 134 104 91 184 163 104 93 188 186 104 94 190 184 104 95 192 162 105 58 118 110 105 64 130 118 105 68 138 135 105 70 142 132 105 72 146 118 105 74 150 146 105 78 158 140 105 80 162 106 105 81 164 160 105 82 166 130 105 86 174 174 105 88 178 161 105 90 182 171 105 91 185 142 105 92 187 183 105 93 189 179 105 94 191 162 105 95 193 159 1058 53 161 145 1058 55 167 138 1152 51 157 152 1152 55 169 138 1155 51 157 148 1155 52 160 127 1155 54 166 121 1184 51 157 121 1184 55 170 120 119 62 129 121 119 64 133 118 119 68 141 105 119 70 145 140 119 72 149 136 119 74 153 143 119 78 162 157 119 80 166 157 119 84 174 157 119 86 178 173 119 88 183 178 119 90 187 178 119 91 189 167 119 92 191 185 119 94 195 181 12 145 157 151 120 59 124 117 120 63 132 115 120 67 140 136 120 69 144 134 120 73 153 149 120 80 167 163 120 83 174 163 120 84 176 149 120 85 178 158 120 87 182 158 120 89 186 165 120 90 188 183 120 91 190 176 120 92 192 151 120 93 194 175 120 94 196 184 120 95 198 182 1210 49 152 112 1210 53 164 114 12496 29 119 114 12496 37 152 148 1352 52 163 154 137 89 189 145 14264 39 163 138 14264 40 167 159 14288 31 129 113 14288 39 163 145 14288 40 167 159 14316 37 155 117 14316 39 163 148 14316 40 167 152 15 130 153 142 15 138 163 140 15015 32 134 115 15015 36 151 115 15015 38 159 146 15015 40 168 114 15472 27 114 110 162 83 184 132 162 84 186 150 162 85 189 183 162 86 191 188 162 87 193 191 162 89 197 180 162 90 200 184 173 83 184 162 18 135 170 164 193 83 188 176 20 105 137 123 20 122 159 150 20 123 161 117 20 124 162 145 20 125 163 134 200 73 169 159 200 74 171 138 200 75 173 156 200 77 178 154 200 78 180 145 200560490130 13 148 114 21 102 135 129 21 106 141 126 21 119 158 128 21 120 159 120 21 121 160 147 21 124 164 141 210 61 143 133 210 63 147 117 210 66 154 143 210 69 161 131 210 73 171 150 210 77 180 147 210 78 182 179 210 79 184 113 210 80 187 177 22 105 142 119 22 111 150 136 22 113 152 114 22 119 160 122 22 123 166 149 220 70 165 147 220 75 176 166 220 78 183 143 220 80 188 170 229 79 185 181 231 65 154 142 231 67 159 150 231 69 164 160 231 76 180 164 231 78 185 140 24 95 132 127 24 97 135 115 24 111 154 149 24 115 160 123 24 118 164 147 24 119 165 143 24 120 166 151 24 121 168 130 24 125 173 135 26 107 152 136 26 113 160 122 26 115 163 148 26 116 165 157 26 119 169 149 26 120 170 154 276 59 145 142 276 61 150 133 276 63 155 115 276 64 157 149 276 65 159 154 276 67 164 147 276 69 169 157 28 99 144 114 28 109 158 139 28 113 164 157 28 114 166 150 28 116 168 152 28 117 170 120 28 119 173 142 284 64 158 140 284 69 170 150 30 105 156 130 30 108 160 154 30 110 163 150 30 119 177 134 30 120 178 156 306 53 133 122 306 59 147 118 306 61 152 110 306 63 157 113 31704 35 158 141 31704 38 172 171 31704 39 176 153 33 98 149 147 33 102 155 123 33 105 160 134 33 106 161 150 33 107 163 137 33 108 164 140 33 109 166 143 34 103 158 124 34 104 160 154 34 105 161 110 34 107 164 161 34 108 166 136 35 98 151 150 38 99 157 141 38 104 165 144 38 108 171 140 385 58 150 112 385 62 161 142 39 99 158 152 39 103 164 143 39 104 166 127 39 106 169 160 392 64 167 159 392 65 169 166 396 41 107 94 396 43 113 103 396 45 118 113 396 47 123 101 396 49 128 117 396 51 133 116 396 54 141 127 396 55 144 134 396 57 149 140 396 58 152 121 396 59 154 144 396 60 157 137 396 61 159 147 396 62 162 155 396 63 165 155 396 64 167 142 396 65 170 149 40 93 150 121 40 98 158 146 40 102 164 134 40 103 166 146 40 106 170 150 40 107 172 152 42 99 162 144 44 85 140 129 44 87 144 141 44 95 157 135 44 99 163 159 44 100 165 131 45 98 162 145 45 100 166 142 46 96 160 148 46 97 162 146 48 93 157 151 48 95 161 144 48 96 162 135 48 97 164 160 48 99 167 142 51 92 157 148 51 96 164 154 51 98 168 159 51 99 169 154 52 91 157 151 52 95 164 145 52 96 165 140 52 97 167 150 52 99 170 143 54 91 158 156 54 95 165 160 54 97 169 145 54 99 172 163 55 90 157 149 55 92 160 155 55 94 164 150 55 98 171 166 55 99 172 126 552 59 163 147 56 83 146 133 56 85 149 138 56 87 153 125 56 89 156 144 56 90 158 141 56 91 160 153 56 93 163 157 56 95 167 161 56 97 170 150 56 98 172 154 564 47 130 120 57 86 151 145 57 88 155 141 57 94 165 160 57 95 167 161 57 98 172 170 57 100 176 154 58 89 157 141 58 97 172 161 6 189 148 143 6 207 162 125 6 209 163 154 60 81 145 142 60 87 156 149 60 91 163 158 60 95 170 162 60 96 172 163 60 97 173 164 60 99 177 136 60 100 179 151 62 89 160 154 62 92 165 151 62 94 169 142 62 96 173 158 62 97 174 161 62 99 178 159 63 90 162 152 63 91 164 140 63 92 166 152 63 94 170 154 63 96 173 159 63 97 175 150 63 98 177 144 63 100 180 152 6469693230 16 158 156 6469693230 18 178 166 6469693230 19 188 120 6469693230 20 197 173 65 86 156 147 65 89 161 155 65 90 163 150 65 94 170 162 65 98 178 175 66 83 152 143 66 89 163 149 66 92 168 167 66 93 170 146 66 95 174 158 66 97 177 172 66 99 181 167 660 53 150 128 660 55 156 142 660 60 170 140 68 83 153 144 68 86 158 127 68 87 160 149 68 89 164 161 68 90 165 123 68 91 167 154 68 92 169 161 68 93 171 167 68 97 178 170 68 99 182 157 68 100 184 170 69 82 151 145 69 84 155 146 69 86 158 147 69 88 162 158 69 90 166 155 69 91 168 151 69 92 169 159 69 93 171 125 69 94 173 145 69 96 177 144 69 97 179 177 69 100 184 164 696 37 106 97 696 39 112 94 696 47 134 90 696 52 149 135 696 54 154 144 696 55 157 135 696 56 160 149 696 58 166 138 696 59 169 160 696 60 171 165 70 81 150 149 70 83 154 142 70 89 165 162 70 91 169 157 72 91 170 137 72 98 183 178 720 49 141 134 720 53 152 111 720 57 164 112 720 59 170 126 74 83 156 137 74 85 159 147 74 87 163 151 74 89 167 151 74 90 169 151 74 91 171 135 74 93 174 147 74 97 182 169 74 98 184 178 74 99 186 174 75 86 162 154 75 92 173 156 75 96 180 153 76 65 123 101 76 67 127 116 76 69 130 127 76 71 134 119 76 73 138 129 76 75 142 132 76 77 145 121 76 79 149 132 76 83 157 136 76 85 160 154 76 87 164 158 76 89 168 160 76 91 172 131 76 93 175 152 76 95 179 173 76 97 183 141 76 98 185 146 76 99 187 162 76 100 189 153 77 54 102 94 77 58 109 106 77 68 128 109 77 70 132 122 77 72 136 119 77 74 140 135 77 76 143 125 77 78 147 141 77 80 151 145 77 82 155 143 77 84 158 143 77 88 166 145 77 89 168 163 77 90 170 156 77 92 174 164 77 94 177 149 77 96 181 165 77 97 183 175 77 99 187 166 78 65 124 114 78 69 131 125 78 71 135 125 78 73 139 115 78 77 147 128 78 79 150 130 78 81 154 138 78 83 158 125 78 85 162 160 78 86 164 126 78 87 165 154 78 89 169 161 78 91 173 167 78 94 179 171 78 95 181 163 78 96 182 166 78 97 184 170 78 98 186 184 78 99 188 176 78 100 190 173 80 59 113 110 80 63 121 110 80 67 128 119 80 71 136 132 80 73 140 114 80 75 143 113 80 77 147 135 80 79 151 150 80 81 155 140 80 82 157 148 80 83 159 136 80 85 162 149 80 87 166 164 80 88 168 151 80 91 174 170 80 92 176 159 80 93 178 173 80 95 181 152 80 96 183 143 80 97 185 182 80 98 187 148 80 99 189 176 80 100 191 152 82 67 129 122 82 69 133 132 82 73 140 136 82 75 144 123 82 77 148 125 82 79 152 139 82 80 154 124 82 81 156 140 82 83 159 122 82 85 163 149 82 88 169 139 82 89 171 152 82 91 175 162 82 93 179 151 82 95 182 161 82 97 186 174 82 98 188 184 82 99 190 182 82 100 192 175 84 61 118 114 84 63 122 105 84 65 126 107 84 67 130 124 84 69 134 123 84 71 138 121 84 73 141 131 84 75 145 139 84 77 149 128 84 81 157 117 84 83 161 149 84 85 164 143 84 87 168 146 84 89 172 162 84 91 176 165 84 92 178 132 84 93 180 168 84 94 182 178 84 95 184 174 84 97 188 157 84 100 193 158 85 58 112 98 85 62 120 112 85 64 123 106 85 68 131 115 85 70 135 105 85 72 139 113 85 74 143 136 85 76 147 135 85 78 151 126 85 80 154 136 85 82 158 154 85 84 162 140 85 85 164 134 85 86 166 160 85 89 172 137 85 90 174 161 85 92 178 156 85 93 179 131 85 94 181 162 85 96 185 158 85 97 187 149 85 98 189 184 85 99 191 148 8589869056 19 189 162 8589869056 20 199 168 86 63 122 109 86 73 142 135 86 75 146 138 86 77 149 142 86 79 153 144 86 80 155 150 86 81 157 137 86 85 165 152 86 87 169 164 86 89 173 131 86 90 175 132 86 91 177 152 86 93 180 155 86 94 182 174 86 95 184 178 86 96 186 166 86 97 188 175 86 98 190 174 86 99 192 189 86 100 194 161 87 54 105 95 87 56 109 105 87 60 117 102 87 62 120 99 87 66 128 112 87 68 132 103 87 70 136 122 87 72 140 120 87 76 148 142 87 78 152 128 87 80 155 148 87 82 159 151 87 83 161 153 87 84 163 151 87 86 167 156 87 88 171 165 87 89 173 138 87 90 175 145 87 92 179 170 87 94 183 182 87 95 184 147 87 96 186 176 87 97 188 184 87 98 190 167 87 99 192 189 87 100 194 173 88 57 111 94 88 59 115 113 88 63 123 106 88 65 127 110 88 67 131 129 88 69 135 130 88 71 139 129 88 73 143 127 88 75 146 123 88 77 150 150 88 80 156 124 88 83 162 132 88 85 166 156 88 86 168 140 88 87 170 158 88 89 174 125 88 90 176 128 88 91 178 151 88 93 181 168 88 95 185 167 88 96 187 171 88 97 189 160 88 98 191 178 88 99 193 162 88 100 195 172 882 55 163 156 882 57 169 141 882 58 172 131 882 59 175 168 882 60 178 129 90 61 120 107 90 63 124 116 90 67 132 98 90 69 136 130 90 73 144 124 90 75 148 128 90 77 151 143 90 79 155 125 90 83 163 137 90 85 167 166 90 87 171 155 90 89 175 172 90 90 177 129 90 91 179 159 90 92 181 160 90 93 183 161 90 95 187 176 90 96 189 154 90 97 191 165 90 98 192 113 90 99 194 173 90 100 196 177 91 64 125 100 91 68 133 124 91 70 137 125 91 74 145 132 91 76 149 137 91 80 157 141 91 82 161 146 91 84 164 147 91 86 168 157 91 90 176 166 91 91 178 169 91 92 180 177 91 93 182 153 91 94 184 180 91 95 186 165 91 96 188 175 91 97 190 175 91 98 192 189 91 99 194 190 91 100 196 181 92 63 124 94 92 67 132 123 92 69 136 106 92 71 140 121 92 73 144 135 92 75 148 127 92 79 156 142 92 83 164 152 92 85 167 142 92 86 169 149 92 87 171 157 92 89 175 171 92 91 179 163 92 93 183 158 92 94 185 174 92 95 187 170 92 96 189 158 92 97 191 182 92 98 193 189 92 99 195 180 92 100 197 166 93 62 122 116 93 64 126 116 93 74 146 141 93 78 154 148 93 80 158 143 93 82 162 158 93 86 170 149 93 92 181 162 93 93 183 162 93 94 185 166 93 96 189 177 93 97 191 169 93 99 195 173 94 65 129 119 94 71 141 109 94 79 156 137 94 83 164 157 94 84 166 150 94 85 168 134 94 87 172 144 94 88 174 140 94 89 176 135 94 91 180 172 94 92 182 170 94 93 184 163 94 95 188 137 94 96 190 182 94 97 192 164 94 98 194 157 94 99 196 164 94 100 198 156 95 64 127 114 95 66 131 110 95 68 134 125 95 70 138 129 95 74 146 143 95 76 150 146 95 78 154 151 95 80 158 140 95 82 162 143 95 84 166 148 95 90 178 153 95 92 182 163 95 94 186 186 95 95 188 184 95 96 190 175 95 98 194 180 95 99 196 180 95 100 198 167 96 61 122 111 96 63 126 94 96 65 130 105 96 67 134 118 96 69 138 102 96 75 149 139 96 77 153 146 96 79 157 148 96 81 161 153 96 83 165 134 96 84 167 155 96 85 169 139 96 86 171 166 96 87 173 161 96 91 181 158 96 93 185 144 96 94 187 181 96 96 191 154 96 97 193 180 96 98 195 185 96 99 197 179 96 100 199 149 966 51 153 112 966 52 156 149 966 54 162 153 966 55 165 126 966 59 177 166 9699690 25 176 140 98 98 196 179 99 58 116 108 99 62 124 86 99 64 128 105 99 72 144 94 99 78 156 131 99 80 160 126 99 82 164 153 99 85 170 144 99 86 172 170 99 88 176 171 99 90 180 143 99 92 184 175 99 94 188 181 99 95 190 171 99 96 192 176 99 97 194 156 99 98 196 178 99 99 198 181 99 100 200 174 Last fiddled with by garambois on 2022-09-18 at 19:10 |
![]() |
![]() |
![]() |
#4 |
"Ed Hall"
Dec 2009
Adirondack Mtns
23×677 Posts |
![]()
How much of a priority would you place in advancing the list to term 2? I hesitate to start a new thread for this endeavor, but it is a sub-project that has an actual end point. We brought very few new members into the fold with the other thread, so I would not present this in that manner.
The other thread is somewhat winding down, so a different direction with new possibilities may be appealing to some. Thoughts from those of us that would do the factoring? |
![]() |
![]() |
![]() |
#5 |
"Curtis"
Feb 2005
Riverside, CA
22·33·53 Posts |
![]()
New thread for this task seems good.
![]() Just move garambois' post to its own thread, simple? |
![]() |
![]() |
![]() |
#6 | ||
"Gary"
May 2007
Overland Park, KS
12,043 Posts |
![]() Quote:
Quote:
I agree with this! A new thread for this new effort so that other routine statuses aren't overwhelmed in this thread. My thought is to move all relevant posts starting with Karsten's original post that initiated it. |
||
![]() |
![]() |
![]() |
#7 |
"Gary"
May 2007
Overland Park, KS
12,043 Posts |
![]()
My effort in the other thread to work on all same-parity exponents with starting size > 185 digits will remove quite a few sequences from the list for the new index 1 effort. I'm done with the work but am currently in the process of adding everything to the FactorDB. I'll report in that thread when I'm done.
Also as I continue with the general initialization effort for medium to large size opposite-parity exponents for bases < 100 previously mentioned in this thread, more index 1's will be eliminated. As for the recent base 100-195 effort, there were next to zero index 1's there because most bases in that range are prime. For prime bases, the index is always >= 2 due to another factoring project. It might make sense to run a new index 1 list sometime later on Monday. |
![]() |
![]() |
![]() |
#8 |
"Ed Hall"
Dec 2009
Adirondack Mtns
23·677 Posts |
![]()
If I'm to moderate the new thread, I'll try to use a script that checks the db and lists sequences in the same manner as the other thread. I'd prefer not to task others with providing the lists, but welcome any notes of error.
|
![]() |
![]() |
![]() |
#9 |
"Ed Hall"
Dec 2009
Adirondack Mtns
23·677 Posts |
![]()
I would also welcome other notes: encouragement, praise, etc. as well as criticism.
![]() When I initiate the other thread, I will move relevant posts from this one and continually edit the first as with the other thread. I believe the first post I will move (and begin editing) will be #1907. @Karsten: If there's an objection with my modifications to your post, let me know. |
![]() |
![]() |
![]() |
#10 | ||
"Gary"
May 2007
Overland Park, KS
12,043 Posts |
![]() Quote:
Quote:
Go Ed go! We know you can create that awesome list! ![]() (Oh...maybe I'm getting a little excited too soon.) |
||
![]() |
![]() |
![]() |
#11 |
"Gary"
May 2007
Overland Park, KS
12,043 Posts |
![]()
I'm down to base 96 in my medium-large exponent opposite-parity initialization effort. With base 96 alone, I think something like 7-8 index 1's were eliminated as I entered them in the DB in the last hour. The bases with the extra-high exponents (starting size > 180 digits) will have many sequences ripe for elimination from index 1 because they are very unlikely to have ever been searched. Non-prime bases in the 90s and to a lesser extent in the 80s should be the most prolific in this regard.
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
A new idea for OEIS "triangle read by rows" sequence | sweety439 | sweety439 | 4 | 2022-05-28 06:20 |
Aliquot Sequence 18528 - Team Project? | EdH | Aliquot Sequences | 45 | 2021-06-27 12:30 |
Is there a copy of "the" aliquot tree anywhere? | Dubslow | Aliquot Sequences | 11 | 2016-11-02 05:05 |
Possible extention to the "GPU to 72 Tool" project? | chalsall | GPU to 72 | 332 | 2012-01-04 01:45 |
Collaborative mathematics: the "polymath" project | Dougy | Math | 11 | 2009-10-21 10:04 |