mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > sweety439

Reply
 
Thread Tools
Old 2021-06-15, 14:58   #1222
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

5·7·83 Posts
Default Riesel base 187

Code:
1,37
2,1
3,2
4,9
5,1
6,2
7,510
8,2
9,3
10,16
11,110
12,1
13,0
14,1
15,4
16,1
17,1125
18,12
19,4
20,1
21,7
22,8
23,10
24,3
25,3
26,1
27,0
28,4
29,1
30,3
31,74
32,1
33,0
34,4
35,2
36,5
37,1
38,4
39,0
40,3
41,1
42,1
43,136
44,5
45,5
46,2
47,2
48,71
49,3
50,1
With CK=51

k = 13, 27, 33, 39 remain at n=2000
sweety439 is offline   Reply With Quote
Old 2021-06-15, 14:59   #1223
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

5·7·83 Posts
Default Riesel base 188

Code:
1,3
2,2
3,1
4,1
5,40
6,950
7,7
With CK=8

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2021-06-15, 15:01   #1224
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

5×7×83 Posts
Default Riesel base 189

Code:
1,3
2,3
3,1
4,(partial algebra factors)
5,2
6,3
7,1
8,1
With CK=9

All k where k = m^2 and m = = 2 or 3 mod 5:
for even n let k = m^2 and let n = 2*q; factors to:
(m*189^q - 1) * (m*189^q + 1)
odd n:
factor of 5

This includes k = 4

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2021-06-15, 15:02   #1225
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

290510 Posts
Default Riesel base 190

CK = 626861 is too high, thus not run this base
sweety439 is offline   Reply With Quote
Old 2021-06-15, 15:03   #1226
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

5×7×83 Posts
Default Riesel base 191

Code:
1,17
2,970
3,2
4,5
With CK=5

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2021-06-15, 15:19   #1227
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

5×7×83 Posts
Default Riesel base 192

Code:
1,2
192,1
383,3
574,1
765,1
956,3
1147,1
1338,2
1529,67
1720,4
1911,2
2102,1
2293,7
2484,5
2675,1
2866,2
3057,5
3248,1032
3439,1
3630,34
3821,379
4012,2
4203,72
4394,3
4585,15
4776,1
4967,1
5158,7
5349,4
5540,1
5731,0
5922,1
6113,39
6304,1
6495,1
6686,2
6877,2
7068,2
7259,1
7450,1
7641,1
7832,1
8023,3
8214,0
8405,2
8596,1
8787,8
8978,3
9169,4
9360,4
9551,1
9742,2
9933,2
10124,1
10315,1
10506,2
10697,1
10888,50
11079,3
11270,1
11461,14
11652,9
11843,1846
12034,1
12225,1
12416,2
12607,2
12798,3
12989,4
13180,1
13371,1
13562,1
13753,2
With CK=13897

Only list k == 1 mod 191 since other k are already in CRUS

the remain k with k == 1 mod 191 are 5731, 8214 (both at n=2000)

other remain k are {253, 311, 593, 894, 898, 1268, 1422, 1704, 2118, 2264, 2315, 2324, 2396, 2441, 2909, 3092, 3282, 3303, 3323, 3719, 3859, 4038, 4062, 4078, 4104, 4164, 4247, 4304, 4372, 4426, 4618, 4679, 5132, 5173, 5523, 5547, 5584, 5758, 5761, 5789, 5967, 5984, 6083, 6175, 6177, 6205, 6261, 6263, 6297, 6353, 6354, 6484, 6547, 6558, 6746, 6789, 6889, 6939, 7096, 7407, 7528, 7549, 7591, 7756, 7889, 7913, 7931, 7984, 8187, 8248, 8347, 8361, 8382, 8493, 8537, 8988, 9091, 9111, 9208, 9402, 9689, 9883, 10037, 10063, 10162, 10349, 10396, 10423, 10488, 10657, 10817, 10988, 11002, 11213, 11488, 11933, 12132, 12157, 12234, 12317, 12424, 12716, 12782, 12797, 12906, 12983, 12984, 13358, 13484, 13605, 13623, 13738, 13798}, see CRUS

All k where k = m^2 and m = = 81 or 112 mod 193:
for even n let k = m^2 and let n = 2*q; factors to:
(m*192^q - 1) * (m*192^q + 1)
odd n:
factor of 193

This includes k = 6561, 12544

Last fiddled with by sweety439 on 2021-06-18 at 01:46
sweety439 is offline   Reply With Quote
Old 2021-06-15, 21:00   #1228
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

290510 Posts
Default Riesel base 193

searched to n=2000, see the text file for the status, 0 if no (probable) prime found for this k

CK=484

All k where k = m^2 and m = = 22 or 75 mod 97:
for even n let k = m^2 and let n = 2*q; factors to:
(m*193^q - 1) * (m*193^q + 1)
odd n:
factor of 97

The smallest such k is exactly 484, thus, no k's proven composite by algebraic factors
Attached Files
File Type: txt R193 status.txt (3.4 KB, 6 views)

Last fiddled with by sweety439 on 2021-06-18 at 01:43
sweety439 is offline   Reply With Quote
Old 2021-06-15, 21:01   #1229
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

5·7·83 Posts
Default Riesel base 194

Code:
1,3
2,42
3,3
With CK=4

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2021-06-15, 21:01   #1230
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

55318 Posts
Default Riesel base 195

Code:
1,11
2,1
3,2
4,3
5,1
6,38
7,2
8,1
9,1
10,1
11,4
12,1
With CK=13

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2021-06-15, 21:59   #1231
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

55318 Posts
Default Riesel base 196

searched to n=2000, see the text file for the status, 0 if no (probable) prime found for this k

CK=1267

All k = m^2 for all n; factors to:
(m*14^n - 1) * (m*14^n + 1)
Attached Files
File Type: txt R196 status.txt (9.8 KB, 12 views)

Last fiddled with by sweety439 on 2021-06-15 at 22:00
sweety439 is offline   Reply With Quote
Old 2021-06-15, 22:01   #1232
sweety439
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

5·7·83 Posts
Default Riesel base 197

Code:
1,31
2,2
3,4
4,1
5,10
6,1
7,249
8,4
9,1
With CK=10

Conjecture proven
sweety439 is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
The dual Sierpinski/Riesel problem sweety439 sweety439 14 2021-02-15 15:58
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem sweety439 sweety439 11 2020-09-23 01:42
The reverse Sierpinski/Riesel problem sweety439 sweety439 20 2020-07-03 17:22
Sierpinski/ Riesel bases 6 to 18 robert44444uk Conjectures 'R Us 139 2007-12-17 05:17
Sierpinski/Riesel Base 10 rogue Conjectures 'R Us 11 2007-12-17 05:08

All times are UTC. The time now is 07:23.


Sat Jul 24 07:23:59 UTC 2021 up 1 day, 1:52, 1 user, load averages: 2.05, 1.56, 1.45

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.