mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > Aliquot Sequences

Reply
 
Thread Tools
Old 2009-04-06, 14:43   #34
Joshua2
 
Joshua2's Avatar
 
Sep 2004

21516 Posts
Default

What is a side sequence and how do you know? Does that mean another one turns into it? How far has it been run then?
Joshua2 is offline   Reply With Quote
Old 2009-04-06, 17:36   #35
Andi47
 
Andi47's Avatar
 
Oct 2004
Austria

2·17·73 Posts
Default A second Downdriver!!

I didn't believe my eyes: The same box (my core 2 duo laptop) which has found the downdriver in sequence 181410 at size 117 (this one is still running), has now acquired the downdriver in sequence 100436 at size 112!! So currently two downdrivers are running on my laptop.

Code:
 769 .	 6475959701938472062395779771948694337438870576803335562957370791050937881996050904292127023045123003061504992536 = 2^3 * 11^2 * 19421 * 28837 * 6415927596347193632134061818880476356285518057 * 1861862737769961054263184278160684196214444806194688243
 770 .	 6871822202534686032428404033924964380762393781879662441471716772274041023082144449760623143258134499999406908104 = 2^3 * 858977775316835754053550504240620547595299222734957805183964596534255127885268056220077892907266812499925863513
 771 .	 6012844427217850278374853529684343833167094559144704636287752175739785895196876393540545250350867687499481044606 = 2 * 41 * 149 * 10983883 * 4302296562199 * 31680949838485173568241 * 328719457106664916071630873079651121378789701783310509401248805911
Status:

100436
: size 112, Downdriver!
181410: size 99, Downdriver!


Last fiddled with by Andi47 on 2009-04-06 at 17:38 Reason: added lines of 100436 w/ downdriver
Andi47 is offline   Reply With Quote
Old 2009-04-07, 02:01   #36
Joshua2
 
Joshua2's Avatar
 
Sep 2004

13·41 Posts
Default

I don't know if theres any use for this or not, but I did quite a bit of factoring, so its probably not been done this far. Heres the aliq for 1000020, does an earlier one merge into it?
Attached Files
File Type: zip alq_1000020.zip (128.2 KB, 84 views)
Joshua2 is offline   Reply With Quote
Old 2009-04-07, 06:46   #37
10metreh
 
10metreh's Avatar
 
Nov 2008

2·33·43 Posts
Default

Quote:
Originally Posted by Joshua2 View Post
I don't know if theres any use for this or not, but I did quite a bit of factoring, so its probably not been done this far. Heres the aliq for 1000020, does an earlier one merge into it?
It merges with 552876, just as 1000002 merges with 330594. Some time Wolfgang or Wieb will try to extend 552876 from 80 digits, so it would be good to inform them, but only when this range is reached, not now.

Extending all sequences from 1M to 2M to 60 digits will require a lot of work. First you'll have to get all the updates to the C9C30 and C60 databases from Clifford. Then you'll have to update them as you go alon, side-sequence-checking every sequence. Not a good idea unless you're Wolfgang.

Last fiddled with by 10metreh on 2009-04-07 at 07:17
10metreh is offline   Reply With Quote
Old 2009-04-07, 15:23   #38
Andi47
 
Andi47's Avatar
 
Oct 2004
Austria

2×17×73 Posts
Default Downdriver at sequence 181410 ended.

Quote:
Originally Posted by Andi47 View Post
Status:

100436
: size 112, Downdriver!
181410: size 99, Downdriver!
New status of these:

100436: index 797, sz. 106, Downdriver!

181410: Downdriver has ended at index 1724 at size 98, so the downdriver (started at sz. 117) had reduced the size by 19 digits. Minimum size was 97 digits at index 1742. The sequence currently has size 105 with 2^2*3.
Attached Thumbnails
Click image for larger version

Name:	aliquot_181410.1768.png
Views:	74
Size:	6.6 KB
ID:	3521  

Last fiddled with by Andi47 on 2009-04-07 at 15:24 Reason: added graph of sequence 181410
Andi47 is offline   Reply With Quote
Old 2009-04-08, 15:17   #39
Andi47
 
Andi47's Avatar
 
Oct 2004
Austria

2·17·73 Posts
Default The downdriver is dead, long live the downdriver!

The downdriver run of sequence 100436 has ended in line 921 at size 81, and a new one started just a few minutes later in line 936:

Code:
 917 .	 5436372998495258686364113156319353903513955004640508276953188975415579440781229174 = 2 * 9341 * 24083 * 12083014407488759614364810590472344021073791744101617075496515419536971629
 918 .	 2719398123517340278552387009541636566053690676787393928128839900791483790895690746 = 2 * 11 * 443 * 200204746179818683925359560738707189 * 1393708720866922476661036160962862235914209
 919 .	 1740571054227495244983561478095703787826286411216422657179613487639016161419990854 = 2 * 107 * 12513863290982849183 * 649959921254269227065718824932455489137443196577686612752567
 920 .	 894686055911329331744193381731838447610841989155716009741084639156202805256271034 = 2 * 447343027955664665872096690865919223805420994577858004870542319578101402628135517
 921 .	 447343027955664665872096690865919223805420994577858004870542319578101402628135520 = 2^5 * 5 * 43 * 157 * 29938800629 * 13833057565031038926785679922413007903860285026015750558795859493
 922 .	 640970796024788534016417049618333220495440049914275147010199725898563719967928800 = 2^5 * 5^2 * 83 * 643 * 18233 * 41669 * 9514745280427 * 78223770052875891125497 * 26549238609175380716965247113
 923 .	 945239731311652569745114796677124200974838156034097101672182675470669208143057440 = 2^5 * 5 * 198745271 * 717847692639635742368694703 * 41408821719156009739175554779865983885833893
 924 .	 1287889145148262479914101517237116319986162351917857149559948781879650908650513376 = 2^5 * 9343 * 7580922790379 * 4586724876147287 * 123884619524040916995425401589925511784345815637
 925 .	 1247913992403976304223351449446391125772744001248404598922074751984895940712594464 = 2^5 * 11 * 27521067609769 * 18176881861001051 * 7086916715855641610937194980017337533295421371153
 926 .	 1432264923100115792150433759161124220889548883728793406506389011541319013009774496 = 2^5 * 5807 * 12043 * 335131 * 1131259 * 9711284506853 * 173833525379477672117868533241030985661808350669
 927 .	 1388237317320107954460862573059772949579167871433024748470845468633545437171243104 = 2^5 * 59 * 479 * 1970263 * 32564093 * 55887294371 * 493465322687 * 867547573122956900328344877350095194089
 928 .	 1396982535527456335402677959650430517047970093818970069357819971180282829124052896 = 2^5 * 53 * 214667 * 60697399837 * 63216399186622650160309982196867259718514699690553889006892119
 929 .	 1405232514616764007636497041742680314076650774673021071573890111205714021755383264 = 2^5 * 23189 * 125154507581 * 15131071912678514137980036949571362497701243761440815988901278703
 930 .	 1361438303033923625223987389195895451563723111545422854719648677927817138727212896 = 2^5 * 334294086517944639661 * 7426969719252196462057 * 17135928413554282879259308038063293039
 931 .	 1318893356064113511944116560324910100482530564986068689636849192137140405262429024 = 2^5 * 57427439 * 177665141390608842657806795623011187 * 4039596871199366258901176780172926999
 932 .	 1277677983901929569505742679995679946633639585745781062670025400855762148104290976 = 2^5 * 317694135503 * 125678860686927166979428480035404093545803034736592577435942364269531
 933 .	 1237750546912912038681964632765518942543568806584610995649992439457503964655549088 = 2^5 * 522585025981 * 129663377446397 * 11412688192710379 * 50017376136623333471816523880768252103
 934 .	 1199070842326565558620924707428117302167833516334823819147436913155239108547810272 = 2^5 * 19471 * 68311 * 1369527587 * 20570515696929328771191687856127326724321696239137860142174493
 935 .	 1161755680040890693925186318058625389521883125724100654840923115807293929822976032 = 2^5 * 36304865001277834185162072439332043422558847678878145463778847368977935306968001
 936 .	 1125450815039612859740024245619293346099324278045222509377144268438315994516008094 = 2 * 67 * 519356041001677540327 * 16171731945586375177472867495375966038576462210613127698483
 937 .	 587922067558006717777938564610560323722418640067307261671976284167225835314393314 = 2 * 2777 * 8955075140982561445793243761 * 11820739643744797150996010640486484678860009003881
 938 .	 294278600614198537166487074210389755380800579749437967538010156414429805873162742 = 2 * 147139300307099268583243537105194877690400289874718983769005078207214902936581371
 939 .	 147139300307099268583243537105194877690400289874718983769005078207214902936581374 = 2 * 29 * 73 * 362464363 * 7123933395489914977 * 1399649967743194542969301 * 9615530065988158595426261
 940 .	 84307970063437109435496142267074006806923034716216627198119891542003399138251906 = 2 * 47 * 131 * 6366023 * 26870956631 * 7018599909200313201011561 * 5702531140906003347149250154135453
 941 .	 45830583351906260917516484793205786700832053258989706345971527941454864547163006 = 2 * 556769 * 41157628524492438441720430549479035920491310812015132259493190121446115487
 942 .	 22915415148838703936073567557894541787523788103427289218382542450297796613598274 = 2 * 7 * 11 * 148801397070381194390088101025289232386518104567709670249237288638297380607781
 943 .	 19939387207431080048271805537388757139793426012073095813397796677531849001442942 = 2 * 19^2 * 59 * 817457 * 16761491 * 1152926888212805557 * 3951613754560483272449 * 7498402975804374743419
 944 .	 12161766111257723065516219895368591595326495133418479625542337727936170042717058 = 2 * 19 * 4547 * 260897245590577 * 7984634028049561043009 * 33788085686408708884409827971191975321
Attached Thumbnails
Click image for larger version

Name:	aliquot_100436.945.png
Views:	97
Size:	5.9 KB
ID:	3525  

Last fiddled with by Andi47 on 2009-04-08 at 15:19 Reason: added graph
Andi47 is offline   Reply With Quote
Old 2009-04-08, 16:53   #40
Andi47
 
Andi47's Avatar
 
Oct 2004
Austria

2·17·73 Posts
Default

Quote:
Originally Posted by Andi47 View Post
The downdriver run of sequence 100436 has ended in line 921 at size 81, and a new one started just a few minutes later in line 936
Sequence 100436:

Added ~450 lines and a few more downdriver runs, one of them as short as TWO lines, leading the sequence to a minimum as low as 51 digits. The lucky streak seems now to be over as the sequence has caught the 2^4*31 driver.

*very* short downdriver run:
Code:
 1203 .	 1834681319396002910997320469475987377605859284586016 = 2^5 * 397 * 84048608927281 * 158857877993821 * 10816353365532749129
 1204 .	 1786445837604643650311728698099456764226081421272464 = 2^4 * 111652864850290228144483043631216047764130088829529
 1205 .	 1674792972754353422167245654468240716461951332442966 = 2 * 7 * 34607 * 58153 * 3447022708022371063 * 17244589985651779526653
 1206 .	 1196413029507377800174247196896589096132519069084842 = 2 * 7^2 * 12208296219463038777288236703026419348291010909029
 1207 .	 891205624020801830742041279320928612425243796359288 = 2^3 * 29 * 277 * 7559 * 2353399016963 * 65186843059999 * 11958874338277549
 1208 .	 843896032383624359452100568554385892088308203640712 = 2^3 * 277 * 16670843873 * 24129386382439997 * 946706430192449358097

Last fiddled with by Andi47 on 2009-04-08 at 16:53
Andi47 is offline   Reply With Quote
Old 2009-04-08, 19:43   #41
10metreh
 
10metreh's Avatar
 
Nov 2008

2×33×43 Posts
Default

Quote:
Originally Posted by Andi47 View Post
Sequence 100436:

Added ~450 lines and a few more downdriver runs, one of them as short as TWO lines, leading the sequence to a minimum as low as 51 digits. The lucky streak seems now to be over as the sequence has caught the 2^4*31 driver.

*very* short downdriver run:
Code:
 1203 .     1834681319396002910997320469475987377605859284586016 = 2^5 * 397 * 84048608927281 * 158857877993821 * 10816353365532749129
 1204 .     1786445837604643650311728698099456764226081421272464 = 2^4 * 111652864850290228144483043631216047764130088829529
 1205 .     1674792972754353422167245654468240716461951332442966 = 2 * 7 * 34607 * 58153 * 3447022708022371063 * 17244589985651779526653
 1206 .     1196413029507377800174247196896589096132519069084842 = 2 * 7^2 * 12208296219463038777288236703026419348291010909029
 1207 .     891205624020801830742041279320928612425243796359288 = 2^3 * 29 * 277 * 7559 * 2353399016963 * 65186843059999 * 11958874338277549
 1208 .     843896032383624359452100568554385892088308203640712 = 2^3 * 277 * 16670843873 * 24129386382439997 * 946706430192449358097
I think 2 lines is an unbeatable record because Clifford doesn't count one-line downdriver runs as downdriver runs.
10metreh is offline   Reply With Quote
Old 2009-04-08, 20:34   #42
henryzz
Just call me Henry
 
henryzz's Avatar
 
"David"
Sep 2007
Cambridge (GMT)

2·5·569 Posts
Default

Could you create a project records thread schickel?
henryzz is offline   Reply With Quote
Old 2009-04-09, 05:48   #43
Andi47
 
Andi47's Avatar
 
Oct 2004
Austria

2×17×73 Posts
Exclamation One remarkable thing

Quote:
Originally Posted by Andi47 View Post
Sequence 100436:

Added ~450 lines and a few more downdriver runs, one of them as short as TWO lines, leading the sequence to a minimum as low as 51 digits. The lucky streak seems now to be over as the sequence has caught the 2^4*31 driver.

*very* short downdriver run:
Code:
 1203 .	 1834681319396002910997320469475987377605859284586016 = 2^5 * 397 * 84048608927281 * 158857877993821 * 10816353365532749129
 1204 .	 1786445837604643650311728698099456764226081421272464 = 2^4 * 111652864850290228144483043631216047764130088829529
 1205 .	 1674792972754353422167245654468240716461951332442966 = 2 * 7 * 34607 * 58153 * 3447022708022371063 * 17244589985651779526653
 1206 .	 1196413029507377800174247196896589096132519069084842 = 2 * 7^2 * 12208296219463038777288236703026419348291010909029
 1207 .	 891205624020801830742041279320928612425243796359288 = 2^3 * 29 * 277 * 7559 * 2353399016963 * 65186843059999 * 11958874338277549
 1208 .	 843896032383624359452100568554385892088308203640712 = 2^3 * 277 * 16670843873 * 24129386382439997 * 946706430192449358097
Just noticed this:

From Mersennewiki:
Quote:
Unfortunately, the downdriver is less stable than all of the other drivers except 2^3*3 and will be lost on the next line if a number factors as

2*p, where p is of the form 4n+1
If... but not only if. This one was lost with a factorization of 2*7^2*p.

Last fiddled with by Andi47 on 2009-04-09 at 05:49
Andi47 is offline   Reply With Quote
Old 2009-04-09, 06:11   #44
schickel
 
schickel's Avatar
 
"Frank <^>"
Dec 2004
CDP Janesville

2×1,061 Posts
Default

Quote:
Originally Posted by Andi47 View Post
Just noticed this:

From Mersennewiki:
Quote:
Unfortunately, the downdriver is less stable than all of the other drivers except and will be lost on the next line if a number factors as

2*p, where p is of the form 4n+1
If... but not only if. This one was lost with a factorization of 2*7^2*p.
That's what comes of simplifying....I've never seen that happen on any of mine, but I guess it can happen anytime you have the downdriver plus a(any) prime(s) raised to an even power. If you look at the PDF linked from here, they talk a little about the math behind changes in the driver structure. In fact, they say
Quote:
The behavior is similar if n = 2p^2q, or if n has more prime factors raised to even powers.

Last fiddled with by schickel on 2009-04-09 at 06:13 Reason: Added quote
schickel is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Any updates please ? Aillas XYYXF Project 11 2020-04-05 12:38
Updates Baumann Eduard Information & Answers 5 2012-10-25 18:44
result updates?? timespy Information & Answers 3 2009-04-28 20:26
K=13236795 Status Post ValerieVonck 15k Search 33 2005-10-31 22:54
Stats updates SandStar NFSNET Discussion 7 2004-07-03 22:59

All times are UTC. The time now is 21:11.

Mon Aug 3 21:11:45 UTC 2020 up 17 days, 16:58, 0 users, load averages: 1.28, 1.40, 1.39

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.