Register FAQ Search Today's Posts Mark Forums Read

2009-03-30, 19:20   #12
Andi47

Oct 2004
Austria

2×17×73 Posts

Quote:
 Originally Posted by 10metreh So, after 166 lines of my working on this sequence, this happened:
nice!

 2009-03-31, 08:41 #13 kar_bon     Mar 2006 Germany 2×3×11×43 Posts AQ 10528 currently at index 4604 with 104 digits (C103 remain with still 2*3 driver) i don't know if this was mentioned before: at index 4494 and 4495 there're two number with 89 digits differing by only 12!!! 15526613584739423556724341246550236497122691268330093206540848184776065619780804502468574 and 15526613584739423556724341246550236497122691268330093206540848184776065619780804502468586 not so remarkable: at index 4592 and 4593 there're two numbers with 104 digits where the first 42 digits are equal! are there other such remarkable small differences in 2 indices? perhaps a new thread!?
2009-03-31, 09:20   #14
axn

Jun 2003

110668 Posts

Quote:
 Originally Posted by kar_bon currently at index 4604 with 104 digits (C103 remain with still 2*3 driver) i don't know if this was mentioned before: at index 4494 and 4495 there're two number with 89 digits differing by only 12!!! 15526613584739423556724341246550236497122691268330093206540848184776065619780804502468574 and 15526613584739423556724341246550236497122691268330093206540848184776065619780804502468586 not so remarkable: at index 4592 and 4593 there're two numbers with 104 digits where the first 42 digits are equal! are there other such remarkable small differences in 2 indices? perhaps a new thread!?
These are rare, but not remarkable. Simply put, if N factorises as 2*3*p, then Aliquot(N) = (1+2)*(1+3)*(1+p)-2*3*p
= 12(1+p)-6p=6p+12 = N+12

 2009-03-31, 10:18 #15 mklasson   Feb 2004 4028 Posts Dear god what a ride 103920 has been on over the night. From a c103 to a c112 through a c13, 1400 new lines, and EIGHT different downdriver runs . It's made up for all the fun stuff by going on a truly terrifying 2^3*3*5 run now though... Currently at index 4462. Awesome graph.
2009-03-31, 10:40   #16
schickel

"Frank <^>"
Dec 2004
CDP Janesville

1000010010102 Posts

Quote:
 Originally Posted by mklasson Dear god what a ride 103920 has been on over the night. From a c103 to a c112 through a c13, 1400 new lines, and EIGHT different downdriver runs . It's made up for all the fun stuff by going on a truly terrifying 2^3*3*5 run now though... Currently at index 4462. Awesome graph.
Unfortunately, that is among the nastiest of the drivers since it increases the sequence so quickly. Bail out when your patience is exhausted........Awesome run there, though!

2009-03-31, 16:00   #17
Andi47

Oct 2004
Austria

2·17·73 Posts

Quote:
 Originally Posted by Andi47 with 113454, aliquot.ub crashed right after the first new line, so when I expected it to run over the weekend, it was sitting idle 99% of the time. I have now installed aliqueit.exe and run the sequence with this program. The next (very few) lines are posted to Syds database.
I just posted another update of this sequence to the database.

The sequence is currently at size 101 with $2^5*31$.

 2009-04-01, 04:52 #18 Andi47     Oct 2004 Austria 2×17×73 Posts I updated 181410 (currently with the $2^2$ guide) and 100436. 100436 is missing ~70 lines in between, so the newest steps don't yet show up in the database - I am currently reconstructing these lines. Newest lines of 100436: Code:  589 . 31621426856152810656992664018882835415693517867337099767932953048190435526996066850793716382235021844 = 2^2 * 11 * 19 * 4195566983947247217272580629930185697392170991601 * 9015390152899927461252917163676405705138774860229 590 . 31924024242336091141748574679350613745030297942644816661740396522207204636274934219572874748129590956 = 2^2 * 14080757602937 * 566802318855295426359668389051687629194949561429538230493829774300739550544315988718147 591 . 23943018181756035972543418077497477987496085270387977143235304159268860285626305841533564838321440812 = 2^2 * 31 * 383 * 701 * 858563 * 1479588750450518011 * 566144417215100910095032663904760618474007866402983548177699095979127 592 . 19483726852004724057794888128410072849927222222504705727233996577415877456149433936067992548228085716 = 2^2 * 5159053 * 3391386529861717 * 4678562277212653 * 59504847418867435350016943330537157367511055006367220093387993 593 . 14612801748069602352085194055923553481466829122803796805022512607287767085850356961649134007373836988 = 2^2 * 643205542248250922873 * 37937282874740618480295602479 * 149712306134012415465199734696464608681212465511241 594 . 10959601311052201764103653289370186164848739749943260621922974085957230993706347283592345247623221892 = 2^2 * 17 * 41 * 487 * 780907767913308653 * 10336494600471808059944272772229567143325158848527130956594986697071873273419 595 . 9885916254244557656023753308912678603393981354319609324597794634423912129538881440062273230476171388 = 2^2 * 11^2 * 372605218387 * 2930010766062048727392058551555634648111247 * 18709122405871811309257322003106557959588163 596 . 9130174722462848038853577239980500113213701640170728878245020487175444379248189534626767421429853828 = 2^2 * 11 * 29 * 79 * 313 * 557 * 673 * 15463271 * 1306737167611 * 218855286544429 * 35737499928785989589 * 4884452671158892768743866030511409 597 . 9247942843698336517028312467067181183285861307923085645756134189055740525488661052103666390640546172 = 2^2 * 11 * 19090777 * 1295936299193 * 821243372115125632175539 * 155815445131436421309108461 * 66390022967360005474606431227 598 . 8407221691812794334312267499633646831291637843870475948955159124034750878532969391314848373204668548 = 2^2 * 31 * 167071 * 465770297 * 815979163857104459921 * 6052520072330596623595429 * 176417898919034421334581406335502700069 599 . 6780108428908989187324075718357889832539978547009364411748207333770938405762460686253728824786448252 = 2^2 * 353 * 919 * 95063 * 33211063 * 11170927441 * 148150427192748956861423550587227459221435177067322479672851386173245721 600 . 5131766974782700842739967210658530205886944963560566883550688095944231070579474444510896125007814788 = 2^2 * 19 * 197 * 26971920205514227 * 319723489723854238133 * 320910443502794266941174583 * 123855942253619466529069740436343 601 . 4369474044518426103245601340008908898839176126875980003689933306172176189668297027624568453911875452 = 2^2 * 13^2 * 5661393258803 * 747056323773201007908542363 * 1528290094067947384045629350493289788980253721807354626343 602 . 3910549995465438566110747414512653818270882233854213256918189710915617467106660291770748924464944132 = 2^2 * 11 * 17 * 9689 * 36749 * 265459 * 18160999 * 532280129444790882341 * 5721821703786097923556742789331197431447645211484928399 603 . 3995259311488542492584960148568297844769479092009508402306875842132547467420567868364425795535055868 = 2^2 * 11 * 17 * 172883 * 363136332921091 * 3355587529072721514964335871 * 25354369141181201579383290388728772219914399592907 604 . 4080766117263210984945864292943905012093608324116705458755893658055565654362343640485230043851838468 = 2^2 * 5387 * 1054621 * 56921741 * 138518507623 * 22774683171424524194824328819145919273180055745034075453878277346104397 605 . 3061907148123498118056406800758897141563786667980848545365077812755015373937821245019901001754434300 = 2^2 * 5^2 * 17^2 * 60539 * 5857961 * 1931977244848360587424145598642767 * 154635943355001994325194699171484742487783854947459 606 . 3996383389611509178711262387842398119255976340234405713588660134697948414331765680563268356730519300 = 2^2 * 5^2 * 17 * 521 * 563 * 8014420139556070949915005136562761507553059536725135397995624848611876396311084649632914923 607 . 5219860344156221934974122718907233908354674239822000611171932530502121031236845099457502552656619452 = 2^2 * 8821191560485604643259202965633 * 147935239484496292306818139302523307973103619522216697042928224371311 608 . 3914895258117166451230592039181460977942397153912648185354067061032464247105212740704930226483823204 = 2^2 * 3 * 13 * 421 * 2934087655848591988150859 * 1180089383334268405826929993 * 17215730895147770064690223619999669578140817 609 . 5945900667011863072923888726399872659456704857263198986682930998745961570624338092170860153972523676 = 2^2 * 3 * 13^2 * 109 * 167 * 39133 * 21200987365145406499 * 194136635903293693968663687615576441895179725121379915338472504195417 610 . 9306173747670880308350372453200131806772807305756586140468692807582149896827701491342151041502036324 = 2^2 * 3 * 317 * 6899 * 28843 * 214561 * 1619383 * 48950035120069 * 722854194224270282268765948502557726791947459903372944618910789 611 . 12480759093498301841557810327944249923166375852221908486929840267770987644687873067300261563492523676 = 2^2 * 3 * 239 * 29723 * 107171 * 123347569 * 11075448812621305564484777551090082946800910248598557817719756691155292681121891 612 . 16764117526589995203659281529262905410888729157314871183814855503113010583668711263253448299628986724 = 2^2 * 3 * 2243 * 46062195529851419718929428177 * 13521520865704347640231274798345716713194475277967728331589706238657 613 . 22369595968383350710901573615242752230594330741614653657486707792016851375153815896568451017792164444 = 2^2 * 3 * 113 * 1217 * 876023 * 6281408359 * 11430432980273 * 4178001754879691 * 51582695852537490769792471622684337637203874929847 614 . 30331365578737091544730628319788154210616788181279743123626372473983828079588210854538415139568414116 = 2^2 * 3 * 47 * 478853 * 1129213 * 219179603 * 3112137409 * 145806161795993229103170454883907616654833366690446154521758915812623 615 . 41947848550550724384933238310623665842901119534685066988379823737440470495134178037621308280371384924 = 2^2 * 3 * 11^2 * 237233 * 8251330354439 * 14758560468125629171142352937868862777887763572344388929989438005239305661922051 616 . 65637858394909401784942118793538088639171345878774497001804489452792790861711045865858620963400661156 = 2^2 * 3 * 31 * 173 * 20707534334149161277 * 116583903035726988203 * 29967116760389045843817361 * 14097867316128240284649866208511 617 . 93371475236763719236587648828636901439446885325973729660124300752480089655772033215069000655078737756 = 2^2 * 3 * 7780956269730309936382304069053075119953907110497810805010358396040007471314336101255750054589894813 618 . 124495300315684958982116865104849201919262513767964972880165734336640119541029377620092000873438317036 = 2^2 * 3^2 * 211 * 619 * 2415013 * 113423085603543325496766107 * 96662143478425485272962202009374998913123969011780431278450229 619 . 192203541155671891020841708216659888384633794962692072925395422212715010066211432183780658120513753364 = 2^2 * 3^4 * 749081 * 328025259217 * 7459634124312173 * 323640436850922375849566246041785299118986673153042384527789571841 620 . 310255152324314724455489831477218697190437415506963610010307703124114097917925312222769045791715668412 = 2^2 * 3^3 * 797 * 25342721 * 46097687 * 3085350789607672843908970145313098845663588243144266437419323326891647544248225031 621 . 495119347822286074933874197587227450751697674431545646662836787918892061053735718154650069502776870468 = 2^2 * 3^3 * 81817 * 56032834322474645871146288712436771805517380299886246436020584773753446722533861494266344799163 622 . 788539094984658486314050976377535052011772211553760368389816229486416600050661416171957394155063172092 = 2^2 * 3 * 29 * 47 * 3301789 * 126521573 * 1676516608259 * 68837385811097459978404065918293991273782860697102349846808496250618509 623 . 1155328977306033205421426882844429956065567326129583652911704821829622928104128261556357016086311547908 = 2^2 * 3 * 19 * 61 * 538513 * 194501572438285829 * 793088542156265932283084309922114348481778978175246046697443278434592336713 624 . 1728845352616238728501302725283791816629513030217746305210860484108568270082871533368862938328925181692 = 2^2 * 3 * 3539 * 35381 * 1615378644031852635115930593420536470991237347 * 712278601892814108080585238176675835194656567817 625 . 2306381046504414897559007248468183547136901481543337171545594910585076431640511237845576508484154648068 = 2^2 * 3 * 71 * 409351 * 622359547 * 10625619355068566213389896894010035664507853472888312409863627911076492810495676360097 626 . 3150984629373731480217986867539768451590273385622629348386757887080794797559575165189307819252076388860 = 2^2 * 3 * 5 * 3709 * 14159183200205497799128187595667154001933465379808705618705661396067200492314079110224264488415909 627 . 5674151075650351188022629897087655294734816916304540689640106747859969925289944062631271751087791995940 = 2^2 * 3^3 * 5 * 11^2 * 3803 * 200820702781 * 293526399689 * 856783895153 * 20848696549312373390351 * 21686505974223892177300714610925665311 628 . 13734567829253167005085298810209155759914649322460073974289288028052416727981690754560826322391379280860 = 2^2 * 3^3 * 5 * 11^2 * 43 * 231950011 * 344151111074034241 * 61238400585061371754479405348405322515669780709001936204051257587407153 629 . 34325127558719397235629099320294296126211190234073949071536400878665716223060285384016081148872331812900 = 2^2 * 3^2 * 5^2 * 11^2 * 2131 * 571975922245926982297 * 52696776151698068020937 * 207400298345634420042461 * 23660812789194698782969493639 630 . 83990676053028428328708659619891667818501939704894884178775813629475331578069343056546948605369475699420 = 2^2 * 3^2 * 5 * 11 * 23 * 14249 * 506858456873 * 3979681766503 * 5860077557653273 * 10950028712990852249745394821729915283629895491075799121 631 . 206046494033733385172086615633381128146268049074775860446625408387436043348779693527554603685442974092580 = 2^2 * 3^2 * 5 * 11 * 359 * 463 * 599 * 1045196091398060298613045134100234304193326987596031134783176899712902231938670890857962889737 632 . 480299965003423902880319394694064328637280521164835078966214356314967340552337800618208589190092822131420 = 2^2 * 3^2 * 5 * 7621 * 8870501534925907678265594131196449543247771 * 39471162092226856607144012276257049847435052918291019509 633 . 976801099276437995757634035733230455387016734648369407148050581482508666271093924682430306291501776201220 = 2^2 * 3^5 * 5 * 21724958659 * 2922516970943 * 3165584202463211015578369303422863350733020900030473360062077572268255784590571 634 . 2095901618096128949754556247919473971605761450184480437444564904478568148008286104471731314332071635188220 = 2^2 * 3^4 * 5 * 61 * 1399 * 265077980866500117938974660272403 * 57191919800052282586301170410985820826707988149547992892963674243 635 . 4591581747886084988919441248103626052695405471307425089538369899530072718379820017416477036052254859749380 = 2^2 * 3^5 * 5 * 397 * 2087 * 186298275191398542661 * 6455117683917234778588582882593082033 * 948200319519196339192095724103191755769 636 . 9895380760968104493178725577407846206091326947673050741943767866932364472551972281598018768602326450668540 = 2^2 * 3^3 * 5 * 19 * 23 * 1021 * 41928774629685533 * 2046140368693799621 * 28193975776985415027121 * 16979607806347488520707801945224213676521 $2^2*3^3*5$
2009-04-01, 06:43   #19
10metreh

Nov 2008

2·33·43 Posts

Quote:
 Originally Posted by Andi47 $2^2*3^3*5$
2^2*3^3*5 is not a driver. 2^3*3^3*5 is.

 2009-04-01, 12:32 #20 10metreh     Nov 2008 2×33×43 Posts My downdriver run is over: 97 to 90 digits. It fell into 2^4, so there is a chance it could recapture the downdriver. Attached Thumbnails
 2009-04-01, 13:11 #21 smh     "Sander" Oct 2002 52.345322,5.52471 29×41 Posts I had a nice ride this morning on 205980 Attached Thumbnails
 2009-04-01, 13:15 #22 Andi47     Oct 2004 Austria 2×17×73 Posts Downdriver! Sequence 113454 has caught the Downdriver in line 938: Code:  936 . 10872368730616424365793687233342132879704326242098526448494409719752063921350150283447570990214862584 = 2^3 * 11 * 27604813 * 20017243743498492269 * 113785742956024749635357 * 1965009091995164212843600641970187483709700512217 937 . 11366568114898872515424009809399533965438379732862411912006491303591313502922957087932051985305955016 = 2^3 * 1420821014362359064428001226174941745679797466607801489000811412948914187865369635991506498163244377 938 . 9945747100536513450996008583224592219758582266254610423005679890642399315057587451940545487142710654 = 2 * 89 * 829 * 66697 * 8115099951731413 * 1116490661372549159 * 111534085526157461455371082143646964376928985633541986633 939 . 5158923089988035531867466148014598446103857693179864236911989499138188347422526834943195685460777346 = 2 * 727 * 2029 * 3121 * 14449 * 167043372863 * 232140967225256148122937232815950515453778609340915731435922622072336129853 940 . 2596945781821981483527498912468621510562906085083748059565847312467506004883576167604184738400470654 = 2 * 31 * 59 * 212876009 * 5895188259859 * 145721782536185122330313 * 3882132091036140151490144374995368221490089633368721 941 . 1492285430196969110561807247704154696522933492179251797718995469092322318753790797380236418335017346 = 2 * 83 * 55487 * 15868381 * 14516759993 * 43557671576729071 * 3092580170933602567 * 5221131448393063972393798074164909216873 942 . 773152699347597404410209947196317634559709016005718112954159472975385996680077342409625954527311486 = 2 * 11398967 * 4058168189 * 3627180570851 * 39496346722941207469 * 58332909573350490691920077731571761599372882103819 943 . 386576451699732339739578109609174040060082655255934993712628874466673211513085957083442542621296514 = 2 * 43 * 15233 * 1600719397217 * 184347093390910846035608408212744949503775151135806001711997507274607676603361059 944 . 206812402521333765258740072245391567700111601954138275469803840168201610137988805391645434865102526 = 2 * 13 * 22441 * 37876439 * 148521483959 * 1441460646187823 * 43711913138244933021713459464430528705066397140002599038557 945 . 127284066712530490413513923657117328474267215904708394303137968339536961938668869490005298798948674 = 2 * 41^2 * 71 * 12930787 * 630233502740023649576875765664747 * 65432202696787415477599288497346849554880384189478983 946 . 71168649241675450623689521188984913199042800162637406430583386183606583012295320997261057757223614 = 2 * 11 * 3217 * 226113869 * 522628133 * 1047756331 * 27657139597417271 * 293648266018190235053493819462608669541350324654993 947 . 45325342018630936362590803310955177222848717237074455850156982655636274114629735147670852988284226 = 2 * 15847567 * 1432742471 * 134656481798663401 * 7412301895664866525332616615119195093200902245580566831381312209 948 . 22662675346891615704578226974562981285201583687269827373710150016270464085378084781083713092460734 = 2 * 23 * 61 * 12329 * 1991786737 * 444109648405276638117119 * 740564029028170030384031368495978260001192853273611310347 949 . 13393770963092672513923443988739974328133393588078281000154836087144586653442928182139271872044866 = 2 * 7 * 5412606191 * 14181666769605745391 * 1290364885336774381171007 * 9658920465304533580675071430816379859995657 950 . 9566979263593996653929464579544590119598593094238052869102862038976877238451117958165694544027838 = 2 * 7 * 1997 * 531415095652583291178986346677218932066288247 * 643924345240337689000165821526312752702734983963 951 . 6841769203673308859670424021869036942959234251025827985710618055953971174031389941191347379984706 = 2 * 571 * 2207 * 430309657 * 141389823560571077127334202989 * 44617038238868147218401743304891185894800646949912713 952 . 3443515940466099100261286898330241312522566512973681601392306784155744199862110476318310625247934 = 2 * 32633860279717 * 7874329385897389861 * 10910962530656122276332631 * 614082909013927581614591137586439518561 953 . 1721757970233207830373099208208785812968450729684678738559390170787189627987454788309390065613698 = 2 * 71 * 97 * 80020147 * 31402756948636657 * 1627336602385773009900063446324537 * 30568034012878233205692523345732549 954 . 924254311555597230704716942449197218568904459331730774182834381441515832754938379028174409279102 = 2 * 23 * 4099 * 2128656340832291 * 1312349375133132558267540419 * 1754691262882415154992327165807965917229958564347 955 . 522757540599289065415892217027051501155481658659131568973289686920826912168926051375598492864898 = 2 * 11863 * 266228623 * 82760105216107875875741849875382538288273854225985271142824599066492742878356452201 956 . 261444872571795256111299187698317058786656327861581264466576521463846584404200723908055615003518 = 2 * 659 * 1103 * 20817968777 * 8638748953644766835419743830030758171482707907148031597607183533307647263918771 957 . 131673616443258746003005971844604552928751692134657061801229987614191734296145857675314403523202 = 2 * 179 * 10529 * 3092360722018988561963783829561275083606859 * 11296358404962552161746935266375945665974762929 958 . 66959081919405977689708790708723926080133083672733163981964047868626964911124029562434999236798 = 2 * 33479540959702988844854395354361963040066541836366581990982023934313482455562014781217499618399 959 . 33479540959702988844854395354361963040066541836366581990982023934313482455562014781217499618402 = 2 * 7 * 233 * 9841536563459 * 1042875891148525523494719515323699913593576610993807361298887302171105483999269 960 . 24160281857498448986218438330305017159119529230047339321088446170446982724109582470382254688798 = 2 * 7 * 5483 * 29033 * 70199646943 * 15249600798302650691613039227 * 10126757213423189728064169468894010271990152183 961 . 17266324841011118445358247441651193329240893996029907646256428179955209197732673838904544392674 = 2 * 7 * 125278129 * 185733293 * 53003781402981008044517342559612268090239482651775522045446645770998596260403 962 . 12333089567785554374071039409060003475758296130947479309112180524387288179088830190844388300446 = 2 * 19 * 173 * 23627 * 11899446400074717104302531646367553393 * 6672780628135206170913827445019812746324627365739

 Similar Threads Thread Thread Starter Forum Replies Last Post Aillas XYYXF Project 11 2020-04-05 12:38 Baumann Eduard Information & Answers 5 2012-10-25 18:44 timespy Information & Answers 3 2009-04-28 20:26 ValerieVonck 15k Search 33 2005-10-31 22:54 SandStar NFSNET Discussion 7 2004-07-03 22:59

All times are UTC. The time now is 20:42.

Mon Aug 3 20:42:21 UTC 2020 up 17 days, 16:29, 0 users, load averages: 1.56, 1.60, 1.55