![]() |
![]() |
#2311 |
"Ed Hall"
Dec 2009
Adirondack Mtns
24×3×109 Posts |
![]()
Not sure of its overall comparison, but this what a spin turned up:
Code:
Y0: -9745246329327868715632899278380435005515 Y1: 889878325900711221231313 c0: -1295471364051748723794709783990075145670670208970 c1: 530705036568136709704904344667550809214231 c2: 12621768021036187093368584008778908 c3: -136062379264759978438608893 c4: -665601747473635820 c5: 1841994000 skew: 100489986.090 # lognorm 66.80, E 57.80, alpha -9.00 (proj -2.29), 5 real roots # MurphyE(Bf=1.000e+07,Bg=5.000e+06,area=1.000e+16)=1.325e-15 Best poly cownoise values: 127630069.81469 1.32862281e-15 |
![]() |
![]() |
![]() |
#2312 |
Jun 2012
1111000010002 Posts |
![]()
Latest search with 150M < a5 < 200M got a great result, a new record in fact:
Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 112669829.164 c0: -2064603921500943211208341120966152913484256605160 c1: -553100305708735202153681843696785363102838 c2: -1123368814335157272659060819208531 c3: 86686555399020299463334085 c4: -48480220699625772 c5: -1000026720 Y0: -8655105974831708281053750640808800877309 Y1: 1745049597881904716648987 # MurphyE (Bf=3.436e+10,Bg=1.718e+10,area=1.476e+17) = 1.065e-08 # f(x) = -1000026720*x^5-48480220699625772*x^4+86686555399020299463334085*x^3-1123368814335157272659060819208531*x^2-553100305708735202153681843696785363102838*x-2064603921500943211208341120966152913484256605160 # g(x) = 1745049597881904716648987*x-8655105974831708281053750640808800877309 # skew 112669829.16, size 1.852e-020, alpha -8.593, combined = 1.437e-015 rroots = 5 Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 112669829.164 c0: -2064603921500943211208341120966152913484256605160 c1: -553100305708735202153681843696785363102838 c2: -1123368814335157272659060819208531 c3: 86686555399020299463334085 c4: -48480220699625772 c5: -1000026720 Y0: -8655105974831708281053750640808800877309 Y1: 1745049597881904716648987 # MurphyE (Bf=3.436e+10,Bg=1.718e+10,area=1.476e+17) = 1.065e-08 # f(x) = -1000026720*x^5-48480220699625772*x^4+86686555399020299463334085*x^3-1123368814335157272659060819208531*x^2-553100305708735202153681843696785363102838*x-2064603921500943211208341120966152913484256605160 # g(x) = 1745049597881904716648987*x-8655105974831708281053750640808800877309 # skew 147502910.50, size 1.852e-020, alpha -8.593, combined = 1.443e-015 rroots = 5 ETA: I reversed the signs on the degree 5 polynomial for scoring but copied the CADO output “as is” for this post just to avoid typos. Last fiddled with by swellman on 2022-11-18 at 23:43 |
![]() |
![]() |
![]() |
#2313 | |
I moo ablest echo power!
May 2013
73C16 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#2314 |
"Ed Hall"
Dec 2009
Adirondack Mtns
10100011100002 Posts |
![]()
The spin has a little bit different values, but no better score:
Code:
Y0: -8655105974831701300855359113189934281361 Y1: 1745049597881904716648987 c0: 2064606133902184020044631158676763883956294530480 c1: 553100314695681555880293282932676815134238 c2: 1123367774096497138517294440374423 c3: -86686554623336608265046533 c4: 48480240700160172 c5: 1000026720 skew: 112669829.164 # lognorm 66.15, E 57.56, alpha -8.59 (proj -2.72), 5 real roots # MurphyE(Bf=1.000e+07,Bg=5.000e+06,area=1.000e+16)=1.437e-15 Best poly cownoise values: 147503174.27478 1.44270364e-15 |
![]() |
![]() |
![]() |
#2315 |
Jun 2012
23×13×37 Posts |
![]()
Test sieving results of HP2 (4496) i314 on 16e_small using my recent degree 5 polynomial. Wombatman should report his results in a few days, and if his poly looks better or even close I can retest using his result.
TLDR - go with the best degree 5 polynomial. I used the highest escore poly from post #2312 above: Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 112669829.164 c0: 2064603921500943211208341120966152913484256605160 c1: 553100305708735202153681843696785363102838 c2: 1123368814335157272659060819208531 c3: -86686555399020299463334085 c4: 48480220699625772 c5: 1000026720 Y0: -8655105974831708281053750640808800877309 Y1: 1745049597881904716648987 rlim: 190000000 alim: 260000000 lpbr: 34 lpba: 34 mfbr: 67 mfba: 99 rlambda: 2.5 alambda: 3.66 Code:
MQ Norm_yield speed (sec/rel) 65 4431 0.550 100 4023 0.603 150 3518 0.656 200 3209 0.674 250 3023 0.712 300 2789 0.823 350 2676 0.836 400 2490 0.814 500 2260 0.919 600 2193 0.891 700 2052 1.003 800 1902 1.054 (Note that the speeds cannot be compared to those in post #2304 as it was done in a different environment but I do report recent retest speeds below.) No surprise that this latest deg 5 polynomial has better yield than the previous best degree 5 poly but it also sieves better than the record scoring degree 6 (again refer to post #2304). To allow an apple to apple speed comparison, I retested the degree 6 polynomial in the same environment as the above. Comparative results are summarized here: Code:
deg 5 deg 6 MQ Norm_yield speed (sec/rel) Norm_yield speed (sec/rel) 65 4431 0.550 4690 0.529 100 4023 0.603 4037 0.598 150 3518 0.656 3400 0.536 200 3209 0.674 3108 0.672 250 3023 0.712 2828 0.792 300 2789 0.823 2592 0.612 350 2676 0.836 2411 0.629 400 2490 0.814 2039 0.803 500 2260 0.919 2138 0.927 600 2193 0.891 1998 0.931 700 2052 1.003 1919 1.003 800 1902 1.054 1883 1.025 Q sieving range 65-730M 65-790M I believe 16e_small siever is capable of running this job (71111_329 ran as a GNFS 208 on 16e_small a while back) but I'll check with Greg. |
![]() |
![]() |
![]() |
#2316 | |
"Curtis"
Feb 2005
Riverside, CA
563410 Posts |
![]() Quote:
An alternative would be to run lower Q values privately on CADO as a short team-sieve, say 25% of the job, and use f-small for the rest. CADO provides the most benefit on small Q, so this would provide the minimum-computron solution. Edit: that deg 6 looks faster than deg 5 to me; each data point up to Q=350M is faster on deg 6 than deg 5, and the 400+ timings aren't much worse. An extra 60MQ is a penalty in that more Q are searched at the slow times on the chart, but it looks like a win for deg 6. Last fiddled with by VBCurtis on 2022-11-23 at 03:54 |
|
![]() |
![]() |
![]() |
#2317 |
Apr 2010
F816 Posts |
![]()
A better deg5 poly, although the skew is very high.
Code:
# norm 2.550769e-20 alpha -8.391478 e 1.563e-15 rroots 3 skew: 562428511.57 c0: 35229701658599083347072804838429792433624409916455 c1: 740060962735977715450831524381171122872167 c2: 7367228324704884323458875452274766 c3: -17893261140832785101971792 c4: -31703730464899896 c5: 10810800 Y0: -14957978187398848184626059041595054999068 Y1: 42565897073891884679269 |
![]() |
![]() |
![]() |
#2318 | |
Jun 2012
23·13·37 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#2319 | |||
Jun 2012
384810 Posts |
![]() Quote:
I did communicate with Greg about this job and he was fine with it running on 16e_small. No idea if he’d consider running it on the big siever. Perhaps he and Wombatman will share their thoughts in this thread. Quote:
Quote:
|
|||
![]() |
![]() |
![]() |
#2320 | |
I moo ablest echo power!
May 2013
22×463 Posts |
![]() Quote:
Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 25843989.298 c0: -18448358000205641128583360906872941778572974616 c1: 1509330256254006547427337088596554618122 c2: 212805186977853996868825137169585 c3: 20904019397492273948869 c4: -245454072585221510 c5: 260272320 Y0: -9094208078136566835377808292251147162799 Y1: 2536671400951305310075711 # MurphyE (Bf=3.436e+10,Bg=1.718e+10,area=1.476e+17) = 9.938e-09 # f(x) = 260272320*x^5-245454072585221510*x^4+20904019397492273948869*x^3+212805186977853996868825137169585*x^2+1509330256254006547427337088596554618122*x-18448358000205641128583360906872941778572974616 # g(x) = 2536671400951305310075711*x-9094208078136566835377808292251147162799 |
|
![]() |
![]() |
![]() |
#2321 | |
Apr 2020
52×37 Posts |
![]() Quote:
![]() |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
GIMPS wiki account request thread | ixfd64 | mersennewiki | 169 | 2018-09-21 05:43 |
Polynomial Discriminant is n^k for an n-1 degree polynomial | carpetpool | Miscellaneous Math | 14 | 2017-02-18 19:46 |
Lost Prime Raider password request thread | cheesehead | Forum Feedback | 6 | 2009-07-28 13:02 |
Polynomial | R.D. Silverman | NFSNET Discussion | 13 | 2005-09-16 20:07 |
Deutscher Thread (german thread) | TauCeti | NFSNET Discussion | 0 | 2003-12-11 22:12 |