20221023, 23:10  #2300  
Jun 2012
2^{3}·13·37 Posts 
Quote:
Quote:


20221024, 00:37  #2301  
I moo ablest echo power!
May 2013
73C_{16} Posts 
Quote:


20221025, 18:40  #2302 
Jun 2012
2^{3}×13×37 Posts 
Just FYI, I’m still test sieving the best deg 5 and 6 polys as a sanity check.
Also CADO just finished searching a5 of 525M (and multiples thereof) but found nothing worth reporting. Moving on to a5 of 2550M. Results expected within a week. 
20221026, 05:17  #2303 
I moo ablest echo power!
May 2013
1852_{10} Posts 
Appreciated as always. MSieve is still moving the 197MB .ms file. Only two hits above 1.25e15 were posted.

20221027, 13:28  #2304 
Jun 2012
2^{3}×13×37 Posts 
Test sieving results of HP2 (4496) i314 on 16e using 34/34bit LPBs. I tweaked a couple of parameters from my earlier posted plans but these are very minor. All sieving used ggnfs run single threaded on an 80% tasked 24core Haswell. The timing data seems a bit noisy due to all the other work so take it with a grain of salt.
As a check, early on I ran a few comparative tests with the smaller lim on the sieving side (i.e. rlim = 260M, alim = 190M) but this strategy generated fewer relations than the one used below. Degree 6 (escore = 1.856e15): Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 140138.379 type: gnfs lss: 0 c0: 25913254528907171652995260756449843374970 c1: 1290547516892777857501992555209822939 c2: 6199518954766254144637219981714 c3: 264525951419727864944487871 c4: 67907082683742692904 c5: 4745861603713440 c6: 4669896000 Y0: 2803680302662889860338703572179527 Y1: 1891192000626364510493327 rlim: 190000000 alim: 260000000 lpbr: 34 lpba: 34 mfbr: 67 mfba: 99 rlambda: 2.5 alambda: 3.66 Code:
MQ Norm_yield Speed (sec/rel) 65 4690 0.656 100 4037 0.763 150 3400 0.734 200 3108 0.798 250 2828 0.849 300 2592 0.902 350 2411 0.852 400 2039 1.110 500 2138 1.107 600 1998 1.143 700 1919 1.341 800 1883 1.195 Degree 5 (escore = 1.297e15): Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 771127364.56 type: gnfs lss: 0 Y0: 17068243492239505219994785346910834818341 Y1: 1873940548553722757 c0: 165792391853474935561243616954647727516748946250496 c1: 2160239644350504494844955872920952825447896 c2: 21514458180493538566295548810659238 c3: 5887571126475837688637761 c4: 35919796435243602 c5: 5588280 rlim: 190000000 alim: 260000000 lpbr: 34 lpba: 34 mfbr: 67 mfba: 99 rlambda: 2.5 alambda: 3.66 Code:
MQ Norm_yield Speed (sec/rel) 65 3142 0.943 100 2971 0.848 150 2776 1.002 200 2702 0.899 250 2616 0.864 300 2432 1.112 350 2414 0.959 400 2334 0.978 500 2153 1.032 600 2122 1.213 700 2032 1.199 800 1957 1.283 840 1911 1.165 Comparing the performance of the two polynomials, if we had to choose today then the degree 6 clearly wins. But based on the respective sieving ranges Degree 6: 65790M = 725M Degree 5: 65835M = 770M the degree 6 is only ~6% "better" than the current degree 5. As such, if we can find a degree 5 polynomial > 1.06 * 1.297e15 = 1.378e15 or say 1.38e15 then we have a competitive (or better) degree 5. All back of the envelope of course, perhaps others can provide a deeper analysis. But I think finding even a near record degree 5 (record 208 is 1.439e15) will be the optimal path for sieving. Now we just have to find it! 
20221028, 01:18  #2305  
I moo ablest echo power!
May 2013
2^{2}×463 Posts 
Quote:


20221028, 02:30  #2306 
"Curtis"
Feb 2005
Riverside, CA
3×1,877 Posts 
The thing about targeting a deg 5 score is that the originalstyle Murphy Escore is only about +10% accurate on these GNFS200+ sized jobs. So, rather than think "I need an 8% better scoring deg 5 poly to win", it's more like "I need an 8% less unlucky poly of similar score". That is, if the first deg 5 poly was unlucky at all... I would have expected a deg 6 at this size to sieve as if its score was around 20% lower, which would be a high 1.4.... so maybe the deg 5 poly was already a bit lucky in the sense that it sieves a bit better than the Escore predicts, or the deg 6 is a little unlucky in the same sense.
Is the 1.8 scoring deg 6 a big outlier? I mean, could we expect to find another one of similar score in reasonable time? Maybe we can find a luckier deg 6 of similar score, one that sieves better? I think theory indicates 210 digits as deg 6 cutoff, but outlier finds trump "best degree" for a couple digits above and below 210. Also, CADO might just be good at deg 6 searching.... 
20221028, 13:49  #2307 
Jun 2012
F08_{16} Posts 
Don’t forget we used a degree 5 on the GNFS 208 job 71111_329 last year, but that was a record escore that still stands today. We didn’t bother searching for a degree 6. I note that we ultimately used a 33/34 job on 16e_small.
Agreed that there seems to be a spectrum of escores and polynomials rather than rigid quantum levels in this area 206212(?). That said, it would seem if we find a great degree 5 it could be the optimum sieving polynomial. If we aren’t fortunate enough to find such then we’ve still got a decent degree 6 poly. I’m still searching for a degree 5 using CADO. Willing to search a5 upwards of 350M. At least 16e_small can factor the job. 
20221030, 12:55  #2308 
Jun 2012
F08_{16} Posts 

20221104, 16:18  #2309 
I moo ablest echo power!
May 2013
2^{2}×463 Posts 
100M < a5 < 110M also gives nothing with better than 1.1e15. I'm including the best one below in case it spins to something much better:
Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 68412445.184 c0: 6490975461005746863801015784256416300983191375520 c1: 231258586814488967345438539136760969775530 c2: 10440225468560980050813725518972721 c3: 156529928643307208197868833 c4: 1449302374271799648 c5: 2603240640 Y0: 9431566359373311653513993787769012301589 Y1: 4279013937881714834902949 # MurphyE (Bf=3.436e+10,Bg=1.718e+10,area=1.476e+17) = 9.065e09 # f(x) = 2603240640*x^51449302374271799648*x^4+156529928643307208197868833*x^3+10440225468560980050813725518972721*x^2231258586814488967345438539136760969775530*x6490975461005746863801015784256416300983191375520 # g(x) = 4279013937881714834902949*x9431566359373311653513993787769012301589 # skew 68412445.18, size 1.230e20, alpha 8.246, combined = 1.090e15 rroots = 5 
20221109, 13:48  #2310 
Jun 2012
2^{3}·13·37 Posts 
CADO got a hit:
Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 100566981.63 c0: 11723235909691983027743306329098857594310171655296 c1: 707753756330993822823023676037298428698288 c2: 9044231835578216071902622120895041 c3: 156514944528553735898454733 c4: 590628419557225820 c5: 1841994000 Y0: 9745246322083856027919476915374329400726 Y1: 889878325900711221231313 # MurphyE (Bf=3.436e+10,Bg=1.718e+10,area=1.476e+17) = 1.014e08 # f(x) = 1841994000*x^5+590628419557225820*x^4+156514944528553735898454733*x^39044231835578216071902622120895041*x^2707753756330993822823023676037298428698288*x+11723235909691983027743306329098857594310171655296 # g(x) = 889878325900711221231313*x9745246322083856027919476915374329400726 # skew 100566981.63, size 1.628e020, alpha 9.019, combined = 1.319e015 rroots = 5 Code:
n: 8095101662371927421703337019465587498085337648622133688278589711654019359923503887978141510461468343349838217540569173400647791769725685803537804186347867144149599002247585690859122186539724272741806859085719 skew: 134510202.90 c0: 11723235909691983027743306329098857594310171655296 c1: 707753756330993822823023676037298428698288 c2: 9044231835578216071902622120895041 c3: 156514944528553735898454733 c4: 590628419557225820 c5: 1841994000 Y0: 9745246322083856027919476915374329400726 Y1: 889878325900711221231313 # MurphyE (Bf=3.436e+10,Bg=1.718e+10,area=1.476e+17) = 1.014e08 # f(x) = 1841994000*x^5+590628419557225820*x^4+156514944528553735898454733*x^39044231835578216071902622120895041*x^2707753756330993822823023676037298428698288*x+11723235909691983027743306329098857594310171655296 # g(x) = 889878325900711221231313*x9745246322083856027919476915374329400726 # skew 134510202.90, size 1.628e020, alpha 9.019, combined = 1.325e015 rroots = 5 
Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
GIMPS wiki account request thread  ixfd64  mersennewiki  169  20180921 05:43 
Polynomial Discriminant is n^k for an n1 degree polynomial  carpetpool  Miscellaneous Math  14  20170218 19:46 
Lost Prime Raider password request thread  cheesehead  Forum Feedback  6  20090728 13:02 
Polynomial  R.D. Silverman  NFSNET Discussion  13  20050916 20:07 
Deutscher Thread (german thread)  TauCeti  NFSNET Discussion  0  20031211 22:12 