![]() |
![]() |
#1 |
Mar 2018
72·11 Posts |
![]()
how do you see that
-1666667x2=1 mod 666667? I simply tried but is there a method to "see" it? |
![]() |
![]() |
![]() |
#2 |
Jan 2021
California
11×47 Posts |
![]() |
![]() |
![]() |
![]() |
#3 |
Feb 2017
Nowhere
11000010011102 Posts |
![]()
A little algebra may help:
1666667 = (10^7 + 2)/6 666667 = (2*10^6 +1)/3 2*(10^7 + 2)/6 = (10^7 + 2)/3 (10^7 + 2)/3 = 5*(2*10^6 + 1)/3 - 1 2*(10^7 + 2)/6 == 1 mod (2*10^6 + 2)/3 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Periodicity of the congruence 1666667 mod 666667 | enzocreti | enzocreti | 23 | 2018-12-02 16:26 |