mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > sweety439

Reply
 
Thread Tools
Old 2020-05-27, 15:03   #771
sweety439
 
sweety439's Avatar
 
Nov 2016

3×5×137 Posts
Default

Extended Sierpinski problem:

Finding and proving the smallest k such that (k*b^n+1)/gcd(k+1,b-1) is not prime for all integers n>=1.

Extended Riesel problem:

Finding and proving the smallest k such that (k*b^n-1)/gcd(k-1,b-1) is not prime for all integers n>=1.

Notes:

All n must be >= 1.

k-values that make a full covering set with all or partial algebraic factors are excluded from the conjectures.

k-values that are a multiple of base (b) and where (k+-1)/gcd(k+-1,b-1) (+ for Sierpinski, - for Riesel) is not prime are included in the conjectures but excluded from testing.
Such k-values will have the same prime as k / b.
sweety439 is offline   Reply With Quote
Old 2020-05-27, 15:06   #772
sweety439
 
sweety439's Avatar
 
Nov 2016

40078 Posts
Default

These are the CK for Sierpinski/Riesel bases 2<=b<=2048 (searched up to 10^6)
Attached Files
File Type: txt Sierpinski.txt (17.7 KB, 5 views)
File Type: txt Riesel.txt (17.8 KB, 10 views)
sweety439 is offline   Reply With Quote
Old 2020-05-27, 15:08   #773
sweety439
 
sweety439's Avatar
 
Nov 2016

1000000001112 Posts
Default

In Riesel conjectures, if k=m^2 and m and b satisfy at least one of these conditions, then this k should be excluded from the Riesel base b problem, since it has algebraic factors for even n and it has a single prime factor for odd n, thus proven composite by partial algebraic factors

list all such mod <= 2048

Code:
m                   b
= 2 or 3 mod 5      = 4 mod 5
= 5 or 8 mod 13      = 12 mod 13
= 3 or 5 mod 8      = 9 mod 16
= 4 or 13 mod 17      = 16 mod 17
= 12 or 17 mod 29      = 28 mod 29
= 7 or 9 mod 16      = 17 mod 32
= 6 or 31 mod 37      = 36 mod 37
= 9 or 32 mod 41      = 40 mod 41
= 23 or 30 mod 53      = 52 mod 53
= 11 or 50 mod 61      = 60 mod 61
= 15 or 17 mod 32      = 33 mod 64
= 27 or 46 mod 73      = 72 mod 73
= 34 or 55 mod 89      = 88 mod 89
= 22 or 75 mod 97      = 96 mod 97
= 10 or 91 mod 101      = 100 mod 101
= 33 or 76 mod 109      = 108 mod 109
= 15 or 98 mod 113      = 112 mod 113
= 31 or 33 mod 64      = 65 mod 128
= 37 or 100 mod 137      = 136 mod 137
= 44 or 105 mod 149      = 148 mod 149
= 28 or 129 mod 157      = 156 mod 157
= 80 or 93 mod 173      = 172 mod 173
= 19 or 162 mod 181      = 180 mod 181
= 81 or 112 mod 193      = 192 mod 193
= 14 or 183 mod 197      = 196 mod 197
= 107 or 122 mod 229      = 228 mod 229
= 89 or 144 mod 233      = 232 mod 233
= 64 or 177 mod 241      = 240 mod 241
= 63 or 65 mod 128      = 129 mod 256
= 16 or 241 mod 257      = 256 mod 257
= 82 or 187 mod 269      = 268 mod 269
= 60 or 217 mod 277      = 276 mod 277
= 53 or 228 mod 281      = 280 mod 281
= 138 or 155 mod 293      = 292 mod 293
= 25 or 288 mod 313      = 312 mod 313
= 114 or 203 mod 317      = 316 mod 317
= 148 or 189 mod 337      = 336 mod 337
= 136 or 213 mod 349      = 348 mod 349
= 42 or 311 mod 353      = 352 mod 353
= 104 or 269 mod 373      = 372 mod 373
= 115 or 274 mod 389      = 388 mod 389
= 63 or 334 mod 397      = 396 mod 397
= 20 or 381 mod 401      = 400 mod 401
= 143 or 266 mod 409      = 408 mod 409
= 29 or 392 mod 421      = 420 mod 421
= 179 or 254 mod 433      = 432 mod 433
= 67 or 382 mod 449      = 448 mod 449
= 109 or 348 mod 457      = 456 mod 457
= 48 or 413 mod 461      = 460 mod 461
= 208 or 301 mod 509      = 508 mod 509
= 127 or 129 mod 256      = 257 mod 512
= 235 or 286 mod 521      = 520 mod 521
= 52 or 489 mod 541      = 540 mod 541
= 118 or 439 mod 557      = 556 mod 557
= 86 or 483 mod 569      = 568 mod 569
= 24 or 553 mod 577      = 576 mod 577
= 77 or 516 mod 593      = 592 mod 593
= 125 or 476 mod 601      = 600 mod 601
= 35 or 578 mod 613      = 612 mod 613
= 194 or 423 mod 617      = 616 mod 617
= 154 or 487 mod 641      = 640 mod 641
= 149 or 504 mod 653      = 652 mod 653
= 106 or 555 mod 661      = 660 mod 661
= 58 or 615 mod 673      = 672 mod 673
= 26 or 651 mod 677      = 676 mod 677
= 135 or 566 mod 701      = 700 mod 701
= 96 or 613 mod 709      = 708 mod 709
= 353 or 380 mod 733      = 732 mod 733
= 87 or 670 mod 757      = 756 mod 757
= 39 or 722 mod 761      = 760 mod 761
= 62 or 707 mod 769      = 768 mod 769
= 317 or 456 mod 773      = 772 mod 773
= 215 or 582 mod 797      = 796 mod 797
= 318 or 491 mod 809      = 808 mod 809
= 295 or 526 mod 821      = 820 mod 821
= 246 or 583 mod 829      = 828 mod 829
= 333 or 520 mod 853      = 852 mod 853
= 207 or 650 mod 857      = 856 mod 857
= 151 or 726 mod 877      = 876 mod 877
= 387 or 494 mod 881      = 880 mod 881
= 324 or 605 mod 929      = 928 mod 929
= 196 or 741 mod 937      = 936 mod 937
= 97 or 844 mod 941      = 940 mod 941
= 442 or 511 mod 953      = 952 mod 953
= 252 or 725 mod 977      = 976 mod 977
= 161 or 836 mod 997      = 996 mod 997
= 469 or 540 mod 1009      = 1008 mod 1009
= 45 or 968 mod 1013      = 1012 mod 1013
= 374 or 647 mod 1021      = 1020 mod 1021
= 255 or 257 mod 512      = 513 mod 1024
= 355 or 678 mod 1033      = 1032 mod 1033
= 426 or 623 mod 1049      = 1048 mod 1049
= 103 or 958 mod 1061      = 1060 mod 1061
= 249 or 820 mod 1069      = 1068 mod 1069
= 530 or 563 mod 1093      = 1092 mod 1093
= 341 or 756 mod 1097      = 1096 mod 1097
= 354 or 755 mod 1109      = 1108 mod 1109
= 214 or 903 mod 1117      = 1116 mod 1117
= 168 or 961 mod 1129      = 1128 mod 1129
= 140 or 1013 mod 1153      = 1152 mod 1153
= 243 or 938 mod 1181      = 1180 mod 1181
= 186 or 1007 mod 1193      = 1192 mod 1193
= 49 or 1152 mod 1201      = 1200 mod 1201
= 495 or 718 mod 1213      = 1212 mod 1213
= 78 or 1139 mod 1217      = 1216 mod 1217
= 597 or 632 mod 1229      = 1228 mod 1229
= 546 or 691 mod 1237      = 1236 mod 1237
= 585 or 664 mod 1249      = 1248 mod 1249
= 113 or 1164 mod 1277      = 1276 mod 1277
= 479 or 810 mod 1289      = 1288 mod 1289
= 36 or 1261 mod 1297      = 1296 mod 1297
= 51 or 1250 mod 1301      = 1300 mod 1301
= 257 or 1064 mod 1321      = 1320 mod 1321
= 614 or 747 mod 1361      = 1360 mod 1361
= 668 or 705 mod 1373      = 1372 mod 1373
= 366 or 1015 mod 1381      = 1380 mod 1381
= 452 or 957 mod 1409      = 1408 mod 1409
= 620 or 809 mod 1429      = 1428 mod 1429
= 542 or 891 mod 1433      = 1432 mod 1433
= 497 or 956 mod 1453      = 1452 mod 1453
= 465 or 1016 mod 1481      = 1480 mod 1481
= 225 or 1264 mod 1489      = 1488 mod 1489
= 432 or 1061 mod 1493      = 1492 mod 1493
= 88 or 1461 mod 1549      = 1548 mod 1549
= 339 or 1214 mod 1553      = 1552 mod 1553
= 610 or 987 mod 1597      = 1596 mod 1597
= 40 or 1561 mod 1601      = 1600 mod 1601
= 523 or 1086 mod 1609      = 1608 mod 1609
= 127 or 1486 mod 1613      = 1612 mod 1613
= 166 or 1455 mod 1621      = 1620 mod 1621
= 316 or 1321 mod 1637      = 1636 mod 1637
= 783 or 874 mod 1657      = 1656 mod 1657
= 220 or 1449 mod 1669      = 1668 mod 1669
= 92 or 1601 mod 1693      = 1692 mod 1693
= 414 or 1283 mod 1697      = 1696 mod 1697
= 390 or 1319 mod 1709      = 1708 mod 1709
= 473 or 1248 mod 1721      = 1720 mod 1721
= 410 or 1323 mod 1733      = 1732 mod 1733
= 59 or 1682 mod 1741      = 1740 mod 1741
= 713 or 1040 mod 1753      = 1752 mod 1753
= 775 or 1002 mod 1777      = 1776 mod 1777
= 724 or 1065 mod 1789      = 1788 mod 1789
= 824 or 977 mod 1801      = 1800 mod 1801
= 61 or 1800 mod 1861      = 1860 mod 1861
= 737 or 1136 mod 1873      = 1872 mod 1873
= 137 or 1740 mod 1877      = 1876 mod 1877
= 331 or 1558 mod 1889      = 1888 mod 1889
= 218 or 1683 mod 1901      = 1900 mod 1901
= 712 or 1201 mod 1913      = 1912 mod 1913
= 598 or 1335 mod 1933      = 1932 mod 1933
= 589 or 1360 mod 1949      = 1948 mod 1949
= 259 or 1714 mod 1973      = 1972 mod 1973
= 834 or 1159 mod 1993      = 1992 mod 1993
= 412 or 1585 mod 1997      = 1996 mod 1997
= 229 or 1788 mod 2017      = 2016 mod 2017
= 992 or 1037 mod 2029      = 2028 mod 2029
= 511 or 513 mod 1024      = 1025 mod 2048

Last fiddled with by sweety439 on 2020-05-27 at 15:08
sweety439 is offline   Reply With Quote
Old 2020-05-27, 15:26   #774
sweety439
 
sweety439's Avatar
 
Nov 2016

3×5×137 Posts
Default

If there is an r>1 such that both k and b are perfect r-th powers, then this k should be excluded from the Riesel base b problem. Besides, if there is an odd r>1 such that both k and b are perfect r-th powers, then this k should be excluded from the Sierpinski base b problem. Besides, if k is of the form 4*m^4 and b is a perfect 4th power, then this k should be excluded from the Sierpinski base b problem.

Since these k's proven composite by full algebraic factors.
sweety439 is offline   Reply With Quote
Old 2020-05-27, 15:27   #775
sweety439
 
sweety439's Avatar
 
Nov 2016

3×5×137 Posts
Default

Conjecture 1 (the strong Sierpinski conjecture): For b>=2, k>=1, if there is an n such that:

(1) k*b^n is neither a perfect odd power (i.e. k*b^n is not of the form m^r with odd r>1) nor of the form 4*m^4.
(2) gcd((k*b^n+1)/gcd(k+1,b-1),(b^(9*2^s)-1)/(b-1)) = 1 for all s, i.e. for all s, every prime factor of (k*b^n+1)/gcd(k+1,b-1) does not divide (b^(9*2^s)-1)/(b-1). (i.e. ord_p(b) is not of the form 2^r (r>=0 if p = 2 or p = 3, r>=1 if p>=5), 3*2^r (r>=0) or 9*2^r (r>=0) for every prime factor p of (k*b^n+1)/gcd(k+1,b-1)).
(3) this k is not excluded from this Sierpinski base b by the post #265. (the first 6 Sierpinski bases with k's excluded by the post #265 are 128, 2187, 16384, 32768, 78125 and 131072)

Then there are infinitely many primes of the form (k*b^n+1)/gcd(k+1,b-1).

Conjecture 2 (the strong Riesel conjecture): For b>=2, k>=1, if there is an n such that:

(1) k*b^n is not a perfect power (i.e. k*b^n is not of the form m^r with r>1).
(2) gcd((k*b^n-1)/gcd(k-1,b-1),(b^(9*2^s)-1)/(b-1)) = 1 for all s, i.e. for all s, every prime factor of (k*b^n-1)/gcd(k-1,b-1) does not divide (b^(9*2^s)-1)/(b-1). (i.e. ord_p(b) is not of the form 2^r (r>=0 if p = 2 or p = 3, r>=1 if p>=5), 3*2^r (r>=0) or 9*2^r (r>=0) for every prime factor p of (k*b^n-1)/gcd(k-1,b-1)).

Then there are infinitely many primes of the form (k*b^n-1)/gcd(k-1,b-1).
sweety439 is offline   Reply With Quote
Old 2020-05-27, 15:28   #776
sweety439
 
sweety439's Avatar
 
Nov 2016

3×5×137 Posts
Default

In this case, although (k*b^n+1)/gcd(k+1,b-1) has neither covering set nor algebra factors, but this form still cannot have a prime, thus this case is also excluded in the conjectures. (this situation only exists in the Sierpinski side)

b = q^m, k = q^r, where q is not of the form t^s with odd s>1, and m and r have no common odd prime factor, and the exponent of highest power of 2 dividing r >= the exponent of highest power of 2 dividing m, and the equation 2^x = r (mod m) has no solution.

Examples:

b = q^7, k = q^r, where r = 3, 5, 6 (mod 7).
b = q^14, k = q^r, where r = 6, 10, 12 (mod 14).
b = q^15, k = q^r, where r = 7, 11, 13, 14 (mod 15).
b = q^17, k = q^r, where r = 3, 5, 6, 7, 10, 11, 12, 14 (mod 17).
b = q^21, k = q^r, where r = 5, 10, 13, 17, 19, 20 (mod 21)
b = q^23, k = q^r, where r = 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 (mod 23)
b = q^28, k = q^r, where r = 12, 20, 24 (mod 28)
b = q^30, k = q^r, where r = 14, 22, 26, 28 (mod 30)
b = q^31, k = q^r, where r = 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 (mod 31)
b = q^33, k = q^r, where r = 5, 7, 10, 13, 14, 19, 20, 23, 26, 28 (mod 33)
etc.

(these are all examples for m<=33)
sweety439 is offline   Reply With Quote
Old 2020-05-27, 15:31   #777
sweety439
 
sweety439's Avatar
 
Nov 2016

3×5×137 Posts
Default

A large probable prime n can be proven to be prime if and only if at least one of n-1 and n+1 can be trivially written into a product.

Thus, if n is large, a probable prime (k*b^n+-1)/gcd(k+-1,b-1) can be proven to be prime if and only if gcd(k+-1,b-1) = 1.
sweety439 is offline   Reply With Quote
Old 2020-05-30, 15:26   #778
sweety439
 
sweety439's Avatar
 
Nov 2016

3·5·137 Posts
Default

R36 searched to n=10K

file attached.
Attached Files
File Type: log pfgw.log (7.8 KB, 3 views)
sweety439 is offline   Reply With Quote
Old 2020-05-30, 15:32   #779
sweety439
 
sweety439's Avatar
 
Nov 2016

40078 Posts
Default

Currently status for R36:

Code:
k      n
251    1504
260    1315
924    2126
1148
1356   1230
1555
1923   2120
2110
2133
2443   5987
2753   7310
2776   5057
3181   1476
3590   4593
3699
3826   1834
3942   1425
4241   3528
4330   2939
4551
4635   1330
4737
4865   1181
5027   1119
5196   2235
5339   1310
5483   1479
5581   2618
5615   2456
5791   3878
5853   1163
6069   4353
6236
6542   2387
6581   1900
6873   1134
6883
7101   3048
7253
7316   4182
7362
7399
7445   4785
7617   1946
7631   1471
7991
8250
8259   6371
8321   1610
8361
8363
8472
8696   1117
9140   1109
9156   1030
9201   3153
9469   2950
9491
9582
10695  6672
10913  4118
11010  2766
11014
11143  1872
11212  6403
11216  7524
11434  1231
11568  1570
11904  1279
12174  1645
12320
12653
12731  1354
12766  1359
13641
13800  9790
14191  2462
14358
14503  2340
14540
14799  1454
14836
14973
14974
15228
15578  2733
15656  6611
15687
15756
15909
16168
16908  4132
17013  1539
17107  3264
17354
17502
17648  1630
17749  4275
17881  5205
17946
18203
18342  1045
18945  3993
19035
19315  6319
19389  9119
19572  4896
19646
19907  8439
20092
20186
20279  4042
20485  9140
20630
20684  8627
21162  1320
21415  3236
21880
22164
22312
22793  1419
23013  2934
23126  6343
23182  1320
23213
23441  4950
23482  5314
23607  1627
23621  2240
23792  1027
23901
23906
23975  1290
24125  1557
24236
24382
24556  3870
24645
24731
24887
24971  1132
25011
25052  1421
25159
25161
25204
25679
25788
25831  1633
26107  5574
26160
26355
26382  2087
26530  1101
26900  2271
27161
27262  1043
27296  7115
27342  1974
27680  2913
27901  1289
28416  7315
28846  1252
28897  2125
29199  1180
29266  1510
29453
29741  1838
29748  1314
29847
30031  3896
30161  1445
30970
31005
31190  5320
31326  3222
31414  4817
31634
31673  1225
31955  6185
32154  1703
32302
32380  7190
32411  1736
32451  1913
32522  1634
32668  1061
32811  4462
33047
33516  4038
33627
33686  3520
33762  1052
sweety439 is offline   Reply With Quote
Old 2020-06-07, 03:10   #780
sweety439
 
sweety439's Avatar
 
Nov 2016

3×5×137 Posts
Default

Added missing (probable) primes for S22, S28, R36, R105
Attached Files
File Type: zip extend SR conjectures.zip (1.27 MB, 0 views)
sweety439 is offline   Reply With Quote
Old 2020-06-07, 04:50   #781
sweety439
 
sweety439's Avatar
 
Nov 2016

80716 Posts
Default

See github page https://github.com/xayahrainie4793/E...el-conjectures for the text files, I created a github account.
sweety439 is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
The reverse Sierpinski/Riesel problem sweety439 sweety439 20 2020-07-03 17:22
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem sweety439 sweety439 10 2018-12-14 21:59
The dual Sierpinski/Riesel problem sweety439 sweety439 12 2017-12-01 21:56
Sierpinski/ Riesel bases 6 to 18 robert44444uk Conjectures 'R Us 139 2007-12-17 05:17
Sierpinski/Riesel Base 10 rogue Conjectures 'R Us 11 2007-12-17 05:08

All times are UTC. The time now is 13:58.

Fri Jul 10 13:58:26 UTC 2020 up 107 days, 11:31, 2 users, load averages: 2.18, 2.07, 1.91

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.