mersenneforum.org how is it, primes in the security elements?
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2018-08-29, 14:22 #1 hal1se   Jul 2018 3·13 Posts how is it, primes in the security elements? ever prime templates probably twin prime, all template elements very regularly! 3# template probably twin or cousin prime=1 5# template probably twin or cousin prime=3 7# template probably twin or cousin prime=15=3*5 11# tepmlate probably twin or cousin prime=135=3^3*5 13# template probably twin or cousin prime=1485=3^3*5*11 17# template probably twin or cousin prime=22275=3^4*5^2*11 19# template probably twin or cousin prime=378675=3^4*5^2*11*17 23# template probably twin or cousin prime=7952175=3^5*5^2*7*11*17 some one see, any regularly? you must: look hyper geometric and you must thik complex variables domain! ________________ if we think, only prime template last probably element: ________________ 3# to 5# twinprime count, only (6n+5, 6n+6+1) format = 2 (11, 13) (17, 19) 3#=2*3 to 5#=2*3*5 range 2*3*5 - 2*3 = 2*3*(5-1)=3#*(5-1) 3#*(5-1)/6=(5-1) =4 (3#*n+3#-1, 3#*n+3#+1) format numbers 5# to 7# twinprime count, only (30n+29, 30n+30+1) format = 3 (59, 61) (149, 151) (179, 181) 5#=2*3*5 to 7#=2*3*5*7 range 2*3*5*7 - 2*3*5 = 2*3*5*(7-1)=5#*(7-1) 5#*(7-1)/5#=(7-1) =6 times :(5#*n+5#-1, 5#*n+5#+1) format numbers 7# to 11# twinprime count, only (210n+209, 210n+210+1) format = 2 (419, 421) (1049, 1051) range:7# to 11# (7#*n+7#-1, 7#n+7#+1) format numbers= 7#*(11-1)/7#=(11-1)=10 11# to 13# twinprime count, only (2310n+2309, 2310n+2310+1) format = 4 (9239, 9241) (11549, 11551) (13679, 13681) (25409, 25411) range 11# to 13# prime template last probably twin format numbers: 13-1=12 13# to 17# twinprime count, only (30030n+30029, 30030n+30030+1) format = prime template last probably twin format numbers:17-1=16 range:37# to 43# 37# template's last probably twin prime elements: 43-1=42 probaly twin prime numbers. n=1 to 42, 42 probably twin primes: (37#*n+37#-1, 37#*n+37#+1) 1*isprime(37#*1+(37#-1))*isprime(37#*1+(37#+1)) 2*isprime(37#*2+(37#-1))*isprime(37#*2+(37#+1)) 3*isprime(37#*3+(37#-1))*isprime(37#*3+(37#+1)) 4*isprime(37#*4+(37#-1))*isprime(37#*4+(37#+1)) 5*isprime(37#*5+(37#-1))*isprime(37#*5+(37#+1)) 6*isprime(37#*6+(37#-1))*isprime(37#*6+(37#+1)) 7*isprime(37#*7+(37#-1))*isprime(37#*7+(37#+1)) 8*isprime(37#*8+(37#-1))*isprime(37#*8+(37#+1)) 9*isprime(37#*9+(37#-1))*isprime(37#*9+(37#+1)) 10*isprime(37#*10+(37#-1))*isprime(37#*10+(37#+1)) 11*isprime(37#*11+(37#-1))*isprime(37#*11+(37#+1)) 12*isprime(37#*12+(37#-1))*isprime(37#*12+(37#+1)) 13*isprime(37#*13+(37#-1))*isprime(37#*13+(37#+1)) 14*isprime(37#*14+(37#-1))*isprime(37#*14+(37#+1)) 15*isprime(37#*15+(37#-1))*isprime(37#*15+(37#+1)) 16*isprime(37#*16+(37#-1))*isprime(37#*16+(37#+1)) 17*isprime(37#*17+(37#-1))*isprime(37#*17+(37#+1)) 18*isprime(37#*18+(37#-1))*isprime(37#*18+(37#+1)) 19*isprime(37#*19+(37#-1))*isprime(37#*19+(37#+1)) 20*isprime(37#*20+(37#-1))*isprime(37#*20+(37#+1)) 21*isprime(37#*21+(37#-1))*isprime(37#*21+(37#+1)) 22*isprime(37#*22+(37#-1))*isprime(37#*22+(37#+1)) 23*isprime(37#*23+(37#-1))*isprime(37#*23+(37#+1)) 24*isprime(37#*24+(37#-1))*isprime(37#*24+(37#+1)) 25*isprime(37#*25+(37#-1))*isprime(37#*25+(37#+1)) 26*isprime(37#*26+(37#-1))*isprime(37#*26+(37#+1)) 27*isprime(37#*27+(37#-1))*isprime(37#*27+(37#+1)) 28*isprime(37#*28+(37#-1))*isprime(37#*28+(37#+1)) 29*isprime(37#*29+(37#-1))*isprime(37#*29+(37#+1)) 30*isprime(37#*30+(37#-1))*isprime(37#*30+(37#+1)) 31*isprime(37#*31+(37#-1))*isprime(37#*31+(37#+1)) 32*isprime(37#*32+(37#-1))*isprime(37#*32+(37#+1)) 33*isprime(37#*33+(37#-1))*isprime(37#*33+(37#+1)) 34*isprime(37#*34+(37#-1))*isprime(37#*34+(37#+1)) 35*isprime(37#*35+(37#-1))*isprime(37#*35+(37#+1)) 36*isprime(37#*36+(37#-1))*isprime(37#*36+(37#+1)) 37*isprime(37#*37+(37#-1))*isprime(37#*37+(37#+1)) 38*isprime(37#*38+(37#-1))*isprime(37#*38+(37#+1)) 39*isprime(37#*39+(37#-1))*isprime(37#*39+(37#+1)) 40*isprime(37#*40+(37#-1))*isprime(37#*40+(37#+1)) 41*isprime(37#*41+(37#-1))*isprime(37#*41+(37#+1)) 42*isprime(37#*42+(37#-1))*isprime(37#*42+(37#+1)) 42 probably prime: n=3 and n=22, only 2 twin prime! (29682952539239, 29682952539241) (170676977100629, 170676977100631) ____ range 43# to 47# 43# template's last probably twin prime elementes: 47-1=46 probaly twin prime numbers. n=1 to 46, 46 probably twin primes: (43#*n+43#-1, 43#*n+43#+1) 1*isprime(43#*1+(43#-1))*isprime(43#*1+(43#+1)) 2*isprime(43#*2+(43#-1))*isprime(43#*2+(43#+1)) 3*isprime(43#*3+(43#-1))*isprime(43#*3+(43#+1)) 4*isprime(43#*4+(43#-1))*isprime(43#*4+(43#+1)) 5*isprime(43#*5+(43#-1))*isprime(43#*5+(43#+1)) 6*isprime(43#*6+(43#-1))*isprime(43#*6+(43#+1)) 7*isprime(43#*7+(43#-1))*isprime(43#*7+(43#+1)) 8*isprime(43#*8+(43#-1))*isprime(43#*8+(43#+1)) 9*isprime(43#*9+(43#-1))*isprime(43#*9+(43#+1)) 10*isprime(43#*10+(43#-1))*isprime(43#*10+(43#+1)) 11*isprime(43#*11+(43#-1))*isprime(43#*11+(43#+1)) 12*isprime(43#*12+(43#-1))*isprime(43#*12+(43#+1)) 13*isprime(43#*13+(43#-1))*isprime(43#*13+(43#+1)) 14*isprime(43#*14+(43#-1))*isprime(43#*14+(43#+1)) 15*isprime(43#*15+(43#-1))*isprime(43#*15+(43#+1)) 16*isprime(43#*16+(43#-1))*isprime(43#*16+(43#+1)) 17*isprime(43#*17+(43#-1))*isprime(43#*17+(43#+1)) 18*isprime(43#*18+(43#-1))*isprime(43#*18+(43#+1)) 19*isprime(43#*19+(43#-1))*isprime(43#*19+(43#+1)) 20*isprime(43#*20+(43#-1))*isprime(43#*20+(43#+1)) 21*isprime(43#*21+(43#-1))*isprime(43#*21+(43#+1)) 22*isprime(43#*22+(43#-1))*isprime(43#*22+(43#+1)) 23*isprime(43#*23+(43#-1))*isprime(43#*23+(43#+1)) 24*isprime(43#*24+(43#-1))*isprime(43#*24+(43#+1)) 25*isprime(43#*25+(43#-1))*isprime(43#*25+(43#+1)) 26*isprime(43#*26+(43#-1))*isprime(43#*26+(43#+1)) 27*isprime(43#*27+(43#-1))*isprime(43#*27+(43#+1)) 28*isprime(43#*28+(43#-1))*isprime(43#*28+(43#+1)) 29*isprime(43#*29+(43#-1))*isprime(43#*29+(43#+1)) 30*isprime(43#*30+(43#-1))*isprime(43#*30+(43#+1)) 31*isprime(43#*31+(43#-1))*isprime(43#*31+(43#+1)) 32*isprime(43#*32+(43#-1))*isprime(43#*32+(43#+1)) 33*isprime(43#*33+(43#-1))*isprime(43#*33+(43#+1)) 34*isprime(43#*34+(43#-1))*isprime(43#*34+(43#+1)) 35*isprime(43#*35+(43#-1))*isprime(43#*35+(43#+1)) 36*isprime(43#*36+(43#-1))*isprime(43#*36+(43#+1)) 37*isprime(43#*37+(43#-1))*isprime(43#*37+(43#+1)) 38*isprime(43#*38+(43#-1))*isprime(43#*38+(43#+1)) 39*isprime(43#*39+(43#-1))*isprime(43#*39+(43#+1)) 40*isprime(43#*40+(43#-1))*isprime(43#*40+(43#+1)) 41*isprime(43#*41+(43#-1))*isprime(43#*41+(43#+1)) 42*isprime(43#*42+(43#-1))*isprime(43#*42+(43#+1)) 43*isprime(43#*43+(43#-1))*isprime(43#*43+(43#+1)) 44*isprime(43#*44+(43#-1))*isprime(43#*44+(43#+1)) 45*isprime(43#*45+(43#-1))*isprime(43#*45+(43#+1)) 46*isprime(43#*46+(43#-1))*isprime(43#*46+(43#+1)) 46 probably prime: n=23 , only 1 twin prime! ( (43#*23+(43#-1)) , (43#*23+(43#+1)) ) (313986271960080719, 313986271960080721) _________ range: 47# to 53# 47# template's last probably twin prime elements: 53-1=52 probaly twin prime numbers. n=1 to 52, 52 probably twin primes: (47#*n+47#-1, 47#*n+47#+1) 1*isprime(47#*1+(47#-1))*isprime(47#*1+(47#+1)) 2*isprime(47#*2+(47#-1))*isprime(47#*2+(47#+1)) 3*isprime(47#*3+(47#-1))*isprime(47#*3+(47#+1)) 4*isprime(47#*4+(47#-1))*isprime(47#*4+(47#+1)) 5*isprime(47#*5+(47#-1))*isprime(47#*5+(47#+1)) 6*isprime(47#*6+(47#-1))*isprime(47#*6+(47#+1)) 7*isprime(47#*7+(47#-1))*isprime(47#*7+(47#+1)) 8*isprime(47#*8+(47#-1))*isprime(47#*8+(47#+1)) 9*isprime(47#*9+(47#-1))*isprime(47#*9+(47#+1)) 10*isprime(47#*10+(47#-1))*isprime(47#*10+(47#+1)) 11*isprime(47#*11+(47#-1))*isprime(47#*11+(47#+1)) 12*isprime(47#*12+(47#-1))*isprime(47#*12+(47#+1)) 13*isprime(47#*13+(47#-1))*isprime(47#*13+(47#+1)) 14*isprime(47#*14+(47#-1))*isprime(47#*14+(47#+1)) 15*isprime(47#*15+(47#-1))*isprime(47#*15+(47#+1)) 16*isprime(47#*16+(47#-1))*isprime(47#*16+(47#+1)) 17*isprime(47#*17+(47#-1))*isprime(47#*17+(47#+1)) 18*isprime(47#*18+(47#-1))*isprime(47#*18+(47#+1)) 19*isprime(47#*19+(47#-1))*isprime(47#*19+(47#+1)) 20*isprime(47#*20+(47#-1))*isprime(47#*20+(47#+1)) 21*isprime(47#*21+(47#-1))*isprime(47#*21+(47#+1)) 22*isprime(47#*22+(47#-1))*isprime(47#*22+(47#+1)) 23*isprime(47#*23+(47#-1))*isprime(47#*23+(47#+1)) 24*isprime(47#*24+(47#-1))*isprime(47#*24+(47#+1)) 25*isprime(47#*25+(47#-1))*isprime(47#*25+(47#+1)) 26*isprime(47#*26+(47#-1))*isprime(47#*26+(47#+1)) 27*isprime(47#*27+(47#-1))*isprime(47#*27+(47#+1)) 28*isprime(47#*28+(47#-1))*isprime(47#*28+(47#+1)) 29*isprime(47#*29+(47#-1))*isprime(47#*29+(47#+1)) 30*isprime(47#*30+(47#-1))*isprime(47#*30+(47#+1)) 31*isprime(47#*31+(47#-1))*isprime(47#*31+(47#+1)) 32*isprime(47#*32+(47#-1))*isprime(47#*32+(47#+1)) 33*isprime(47#*33+(47#-1))*isprime(47#*33+(47#+1)) 34*isprime(47#*34+(47#-1))*isprime(47#*34+(47#+1)) 35*isprime(47#*35+(47#-1))*isprime(47#*35+(47#+1)) 36*isprime(47#*36+(47#-1))*isprime(47#*36+(47#+1)) 37*isprime(47#*37+(47#-1))*isprime(47#*37+(47#+1)) 38*isprime(47#*38+(47#-1))*isprime(47#*38+(47#+1)) 39*isprime(47#*39+(47#-1))*isprime(47#*39+(47#+1)) 40*isprime(47#*40+(47#-1))*isprime(47#*40+(47#+1)) 41*isprime(47#*41+(47#-1))*isprime(47#*41+(47#+1)) 42*isprime(47#*42+(47#-1))*isprime(47#*42+(47#+1)) 43*isprime(47#*43+(47#-1))*isprime(47#*43+(47#+1)) 44*isprime(47#*44+(47#-1))*isprime(47#*44+(47#+1)) 45*isprime(47#*45+(47#-1))*isprime(47#*45+(47#+1)) 46*isprime(47#*46+(47#-1))*isprime(47#*46+(47#+1)) 47*isprime(47#*47+(47#-1))*isprime(47#*47+(47#+1)) 48*isprime(47#*48+(47#-1))*isprime(47#*48+(47#+1)) 49*isprime(47#*49+(47#-1))*isprime(47#*49+(47#+1)) 50*isprime(47#*50+(47#-1))*isprime(47#*50+(47#+1)) 51*isprime(47#*51+(47#-1))*isprime(47#*51+(47#+1)) 52*isprime(47#*52+(47#-1))*isprime(47#*52+(47#+1)) 52 probably twin prime, but only 1 twin prime: for n=36: (22750921955774182169, 22750921955774182171) _____________ range: 53# to 59#, last prime templates probably twin primes: 58 probably twin prime. 1*isprime(53#*1+(53#-1))*isprime(53#*1+(53#+1)) 2*isprime(53#*2+(53#-1))*isprime(53#*2+(53#+1)) 3*isprime(53#*3+(53#-1))*isprime(53#*3+(53#+1)) 4*isprime(53#*4+(53#-1))*isprime(53#*4+(53#+1)) 5*isprime(53#*5+(53#-1))*isprime(53#*5+(53#+1)) 6*isprime(53#*6+(53#-1))*isprime(53#*6+(53#+1)) 7*isprime(53#*7+(53#-1))*isprime(53#*7+(53#+1)) 8*isprime(53#*8+(53#-1))*isprime(53#*8+(53#+1)) 9*isprime(53#*9+(53#-1))*isprime(53#*9+(53#+1)) 10*isprime(53#*10+(53#-1))*isprime(53#*10+(53#+1)) 11*isprime(53#*11+(53#-1))*isprime(53#*11+(53#+1)) 12*isprime(53#*12+(53#-1))*isprime(53#*12+(53#+1)) 13*isprime(53#*13+(53#-1))*isprime(53#*13+(53#+1)) 14*isprime(53#*14+(53#-1))*isprime(53#*14+(53#+1)) 15*isprime(53#*15+(53#-1))*isprime(53#*15+(53#+1)) 16*isprime(53#*16+(53#-1))*isprime(53#*16+(53#+1)) 17*isprime(53#*17+(53#-1))*isprime(53#*17+(53#+1)) 18*isprime(53#*18+(53#-1))*isprime(53#*18+(53#+1)) 19*isprime(53#*19+(53#-1))*isprime(53#*19+(53#+1)) 20*isprime(53#*20+(53#-1))*isprime(53#*20+(53#+1)) 21*isprime(53#*21+(53#-1))*isprime(53#*21+(53#+1)) 22*isprime(53#*22+(53#-1))*isprime(53#*22+(53#+1)) 23*isprime(53#*23+(53#-1))*isprime(53#*23+(53#+1)) 24*isprime(53#*24+(53#-1))*isprime(53#*24+(53#+1)) 25*isprime(53#*25+(53#-1))*isprime(53#*25+(53#+1)) 26*isprime(53#*26+(53#-1))*isprime(53#*26+(53#+1)) 27*isprime(53#*27+(53#-1))*isprime(53#*27+(53#+1)) 28*isprime(53#*28+(53#-1))*isprime(53#*28+(53#+1)) 29*isprime(53#*29+(53#-1))*isprime(53#*29+(53#+1)) 30*isprime(53#*30+(53#-1))*isprime(53#*30+(53#+1)) 31*isprime(53#*31+(53#-1))*isprime(53#*31+(53#+1)) 32*isprime(53#*32+(53#-1))*isprime(53#*32+(53#+1)) 33*isprime(53#*33+(53#-1))*isprime(53#*33+(53#+1)) 34*isprime(53#*34+(53#-1))*isprime(53#*34+(53#+1)) 35*isprime(53#*35+(53#-1))*isprime(53#*35+(53#+1)) 36*isprime(53#*36+(53#-1))*isprime(53#*36+(53#+1)) 37*isprime(53#*37+(53#-1))*isprime(53#*37+(53#+1)) 38*isprime(53#*38+(53#-1))*isprime(53#*38+(53#+1)) 39*isprime(53#*39+(53#-1))*isprime(53#*39+(53#+1)) 40*isprime(53#*40+(53#-1))*isprime(53#*40+(53#+1)) 41*isprime(53#*41+(53#-1))*isprime(53#*41+(53#+1)) 42*isprime(53#*42+(53#-1))*isprime(53#*42+(53#+1)) 43*isprime(53#*43+(53#-1))*isprime(53#*43+(53#+1)) 44*isprime(53#*44+(53#-1))*isprime(53#*44+(53#+1)) 45*isprime(53#*45+(53#-1))*isprime(53#*45+(53#+1)) 46*isprime(53#*46+(53#-1))*isprime(53#*46+(53#+1)) 47*isprime(53#*47+(53#-1))*isprime(53#*47+(53#+1)) 48*isprime(53#*48+(53#-1))*isprime(53#*48+(53#+1)) 49*isprime(53#*49+(53#-1))*isprime(53#*49+(53#+1)) 50*isprime(53#*50+(53#-1))*isprime(53#*50+(53#+1)) 51*isprime(53#*51+(53#-1))*isprime(53#*51+(53#+1)) 52*isprime(53#*52+(53#-1))*isprime(53#*52+(53#+1)) 53*isprime(53#*53+(53#-1))*isprime(53#*53+(53#+1)) 54*isprime(53#*54+(53#-1))*isprime(53#*54+(53#+1)) 55*isprime(53#*55+(53#-1))*isprime(53#*55+(53#+1)) 56*isprime(53#*56+(53#-1))*isprime(53#*56+(53#+1)) 56 probaly prime, but: n=27, only 1 twinprime: (912496437361321252439, 912496437361321252441) __________ middle point of range: (53# + 57#) / 2 = 53# * (1 + 57)/2 = 53# * 58/2 = 53# * 29 ln (middle point of range)=ln(945085595838511297170) =48,297807174891551584668165091634 this 53# to 59# range every ((48,2978)^2 *(3/4)=1749,5 numbers: 1 twin prime (average!) 56 probably twin, and every 1749,5 numbers average 1 twin. probabaly results: range twin count=0 highly reality. range twin count=1 low reality. range twin count=2 less low reality. ... very rare result: range twin count=56 very low reality. but range twin count= 0,1,2,3 highly reality. if even, many ranges prime templates last probably twin prime range reel count=0, but some ranges at least 1 twin prime reel count posible reality. don't forget: twin prime real count at least 1, posible reality > 0, so: infinity twin prime there are, very simple! _______ range: 1009# to 1013# prime template 1009#, last element probably twin prime numbers: 1013-1=1012 times! middle point of range: (1009# + 1013#)/2=1009#(1+1013)/2= =1009#*507 ln(1009# *507)=969,390 every (3/4)*(969,390)^2= 704787,7 numbers, 1 twinprime average range count! probably twin prime:1012 every 704788 numbers 1 twin prime, average! so: same think! probabaly results: range last element twin count=0 very highly reality. range last elelement twin count=1:this is low reality 1012/704788=1/696,4 reality range twin count=2 more less low reality. ... very rare result: range twin count=1012 very low reality. but range twin count= 0,1,2,3 highly reality. if this range twin count=0, other some big ranges at least 1 twinprime count. so infinity twin primes are there: because low reality result=1,2,3,... low but posible! low reality, but reality >0 so every prime templates last element, primoryel ranges real twin prime count infinity! very simple! test: 1009# template only last element probably twin prime control: 1*isprime(1009#*1+(1009#-1))*isprime(1009#*1+(1009#+1)) 2*isprime(1009#*2+(1009#-1))*isprime(1009#*2+(1009#+1)) 3*isprime(1009#*3+(1009#-1))*isprime(1009#*3+(1009#+1)) 4*isprime(1009#*4+(1009#-1))*isprime(1009#*4+(1009#+1)) 5*isprime(1009#*5+(1009#-1))*isprime(1009#*5+(1009#+1)) 6*isprime(1009#*6+(1009#-1))*isprime(1009#*6+(1009#+1)) 7*isprime(1009#*7+(1009#-1))*isprime(1009#*7+(1009#+1)) 8*isprime(1009#*8+(1009#-1))*isprime(1009#*8+(1009#+1)) 9*isprime(1009#*9+(1009#-1))*isprime(1009#*9+(1009#+1)) 10*isprime(1009#*10+(1009#-1))*isprime(1009#*10+(1009#+1)) ... 1011*isprime(1009#*1011+(1009#-1))*isprime(1009#*1011+(1009#+1)) 1012*isprime(1009#*1012+(1009#-1))*isprime(1009#*1012+(1009#+1)) range 1009# to 1013# only a few hundreds decimal digits (about 500) 1012 twinprime, so 2024 prime test only < 1 minutes. result: no twin prime count, in the 1012 probably twins. very normal! because:this is low reality 1012/704788=1/696,4 reality! but think: infinty real twin prime in: prime template last element probably twin elements! because : count 1 or 2 or 3, posibilities > 0 then, some primoryel big ranges twin prime count must be at least 1 or greater than 1. so:infinty twin prime there are, very simple! _________________ if numbers < 1e5 decimal digits, isprime function very fast or only fast! if 1e5 decimal digits < numbers < 1e8 decimal digits, isprime function medium fast, may be need many parellel cores! but numbers > 1e10 decimal digits isprime function very slow and very bad! may be, somone(s) combined puzzle, near future: numbers =~ 1e16 decimal digits, only a few minute prime test! this method posible, don't forget! how is it, primes in the security elements? prime numbers not safe! people are crude idiots :(
 2018-08-29, 19:02 #2 hal1se   Jul 2018 3×13 Posts find easy twin prime, in the infinty twin primes please look: mersenneforum.org/showthread.php?t=23616
2018-08-30, 02:06   #3
Batalov

"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

53·7·11 Posts

Quote:
 Originally Posted by hal1se people are crude idiots :(
Speak for yourself please.

MOD warning:

Also stop littering. Duplicate posts are not welcome here - and most of your posts are simply duplicates with some minimal changes.
Next posts of this kind will start going to the trash bin.

 Thread Tools

 Similar Threads Thread Thread Starter Forum Replies Last Post Drdmitry Aliquot Sequences 0 2011-12-14 13:50 science_man_88 Science & Technology 24 2010-07-26 12:29 Xyzzy Science & Technology 13 2007-03-09 02:39 Damian PrimeNet 7 2005-06-21 12:46

All times are UTC. The time now is 05:49.

Tue Dec 7 05:49:37 UTC 2021 up 137 days, 18 mins, 0 users, load averages: 1.31, 1.47, 1.53

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.