mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > sweety439

Reply
 
Thread Tools
Old 2021-02-27, 07:28   #1211
sweety439
 
Nov 2016

1011000000112 Posts
Default Riesel base 181

Code:
1,17
2,2
3,1
4,1
5,0
6,2
7,1
8,1
9,5
10,5
11,1
12,8
13,2
14,29
15,3
16,1
17,1
18,1
19,1
20,2
21,0
22,1
23,1
24,5
With CK=25

k = 5, 21 remain at n=2000
sweety439 is offline   Reply With Quote
Old 2021-02-27, 07:30   #1212
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 182

Code:
1,167
2,4
3,2
4,1
5,6
6,1
7,209
8,2
9,1
10,3
11,34
12,6
13,7
14,4
15,1
16,15
17,4
18,2
19,1
20,4
21,1
22,1
23,8
24,4
25,1
26,990
27,38
28,3
29,632
30,4
31,1
32,12
33,3
34,3
35,2
36,1
37,1
38,2
39,17
40,41
41,2
42,1
43,502611
44,152
45,3
46,5
47,122
48,4
49,7
50,2
51,1
52,1
53,2
54,329
55,1
56,2
57,4
58,127
59,96
60,2
61,7
With CK=62

k=43 prime given by CRUS

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2021-02-27, 07:32   #1213
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 183

Code:
1,223
2,2
3,4
4,3
5,1
6,1
7,6
8,2
9,1
10,2
11,2
12,2
13,581
14,1
15,42
16,1
17,175
18,2
19,4
20,1
21,27
22,2
23,534
24,1
25,1
26,37
27,40
28,5
29,1
30,2
31,6
32,3
33,1
34,1
35,2
36,1
37,155
38,10
39,8
40,1
41,3
42,11
43,2
44,3
With CK=45

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2021-02-27, 07:35   #1214
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 184

Code:
1,16703
2,1
3,6
4,(partial algebra factors)
5,1
6,1
7,32
8,1
9,(partial algebra factors)
10,1
11,15
12,1
13,1
14,8
15,2
16,21
17,2
18,2
19,10
20,2
21,1
22,7
23,1
24,8
25,5
26,1
27,1
28,85
29,2
30,1
31,1
32,2
33,2
34,6
35,2
With CK=36

k=1 prime given by generalized repunit prime search

All k where k = m^2 and m = = 2 or 3 mod 5:
for even n let k = m^2 and let n = 2*q; factors to:
(m*184^q - 1) * (m*184^q + 1)
odd n:
factor of 5

This includes k = 4, 9

Conjecture proven
sweety439 is offline   Reply With Quote
Old 2021-02-27, 07:39   #1215
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 185

Code:
1,0
2,2
3,1
4,1
5,4
6,1
7,1
8,8
9,(partial algebra factors)
10,6783
11,4
12,8
13,1
14,4
15,2
16,3
With CK=17

All k where k = m^2 and m = = 3 or 5 mod 8:
for even n let k = m^2 and let n = 2*q; factors to:
(m*185^q - 1) * (m*185^q + 1)
odd n:
factor of 2

This includes k = 9

k=10 prime given by CRUS

k = 1 remain at n=66337, see post https://mersenneforum.org/showpost.p...&postcount=225
sweety439 is offline   Reply With Quote
Old 2021-02-27, 08:47   #1216
sweety439
 
Nov 2016

281910 Posts
Default Riesel base 186

Code:
1,7
2,2
3,1
4,1
5,1
6,1
7,1
8,1
9,5
10,4
11,1
12,112717
13,1
14,4
15,1
16,(partial algebra factors)
17,2
18,1
19,1
20,1
21,2
22,1
23,3
24,1
25,1
26,1
27,1
28,4
29,1
30,2
31,1
32,388
33,2
34,1
35,13
36,0
37,3
38,1
39,1
40,3
41,2
42,7
43,44
44,14
45,1
46,4
47,1
48,4
49,5
50,2
51,32
52,11
53,1
54,2
55,2
56,1
57,1
58,9
59,1
60,1
61,1
62,2
63,1
64,1
65,2
66,5
With CK=67

k=12 prime given by CRUS

All k where k = m^2 and m = = 4 or 13 mod 17:
for even n let k = m^2 and let n = 2*q; factors to:
(m*186^q - 1) * (m*186^q + 1)
odd n:
factor of 17

This includes k = 16

k = 36 remain at n=2000
sweety439 is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
The dual Sierpinski/Riesel problem sweety439 sweety439 14 2021-02-15 15:58
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem sweety439 sweety439 11 2020-09-23 01:42
The reverse Sierpinski/Riesel problem sweety439 sweety439 20 2020-07-03 17:22
Sierpinski/ Riesel bases 6 to 18 robert44444uk Conjectures 'R Us 139 2007-12-17 05:17
Sierpinski/Riesel Base 10 rogue Conjectures 'R Us 11 2007-12-17 05:08

All times are UTC. The time now is 08:15.

Mon May 10 08:15:07 UTC 2021 up 32 days, 2:55, 0 users, load averages: 1.79, 1.97, 1.90

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.