mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > And now for something completely different

Reply
 
Thread Tools
Old 2016-07-02, 05:53   #78
wombatman
I moo ablest echo power!
 
wombatman's Avatar
 
May 2013

178510 Posts
Default

For base 26:

Code:
(26^75993+1)^2-2 is prime! (15529.3052s+0.0087s)
215057 digits.
wombatman is offline   Reply With Quote
Old 2016-07-06, 22:24   #79
rogue
 
rogue's Avatar
 
"Mark"
Apr 2003
Between here and the

2·3,259 Posts
Default

(2^688042-1)^2-2 is prime at 414243 digits. This is a new record for that form and will enter the top 5000 in the 2700 range.
rogue is offline   Reply With Quote
Old 2016-07-06, 22:37   #80
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

76058 Posts
Default

Quote:
Originally Posted by rogue View Post
(2^688042-1)^2-2 is prime at 414243 digits. This is a new record for that form and will enter the top 5000 in the 2700 range.
Congrats for another one!
paulunderwood is offline   Reply With Quote
Old 2016-07-17, 02:10   #81
rogue
 
rogue's Avatar
 
"Mark"
Apr 2003
Between here and the

2×3,259 Posts
Default

I have been very lucky.

(2^695631-1)^2-2 is prime at just over 418,800 digits. It will be around 2600 in the Top 5000.
rogue is offline   Reply With Quote
Old 2016-07-27, 08:04   #82
henryzz
Just call me Henry
 
henryzz's Avatar
 
"David"
Sep 2007
Liverpool (GMT/BST)

11·541 Posts
Default

For base 24:
Code:
(24^20047-1)^2-2 is 3-PRP!
henryzz is online now   Reply With Quote
Old 2016-11-24, 17:31   #83
BotXXX
 
BotXXX's Avatar
 
Aug 2003
Europe

2×97 Posts
Default

Following http://www.mersenneforum.org/showpos...4&postcount=69

(2010^3+1)^2-2 is 3-PRP! (0.0000s+0.0001s)
Primality testing (2010^3+1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 7
Running N+1 test using discriminant 13, base 1+sqrt(13)
Running N+1 test using discriminant 13, base 2+sqrt(13)
(2010^3+1)^2-2 is prime! (0.0227s+0.0010s)

(2010^3-1)^2-2 is 3-PRP! (0.0000s+0.0006s)
Primality testing (2010^3-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 11
Running N+1 test using discriminant 17, base 1+sqrt(17)
Running N+1 test using discriminant 17, base 2+sqrt(17)
(2010^3-1)^2-2 is prime! (0.0242s+0.0014s)

(2010^35-1)^2-2 is 3-PRP! (0.0018s+0.0001s)
Primality testing (2010^35-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 17
Running N+1 test using discriminant 23, base 1+sqrt(23)
(2010^35-1)^2-2 is prime! (0.0311s+0.0004s)

(2010^1967-1)^2-2 is 3-PRP! (3.4481s+0.0003s)
Primality testing (2010^1967-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 17
Running N+1 test using discriminant 29, base 1+sqrt(29)
Running N+1 test using discriminant 29, base 2+sqrt(29)
(2010^1967-1)^2-2 is prime! (32.5536s+0.0007s)

OpenPFGW 3.8.0 on Windows with an Intel Core i7-3667U
Just to get a feeling of cksieve and openpwfg (a long long time ago), after the initial start sieve (-P1e9) I checked 1 <= n <= 2000. The above are the 4 primes found. Will continue to sieve and test this base.

To keep the format of http://www.mersenneforum.org/rogue/ckps.html :
base 2010 (-1) 3 35 1967
base 2010 (+1) 3
BotXXX is offline   Reply With Quote
Old 2017-01-20, 16:10   #84
BotXXX
 
BotXXX's Avatar
 
Aug 2003
Europe

3028 Posts
Default

(2010^30505+1)^2-2 is 3-PRP! (1158.2858s+0.0108s)
Primality testing (2010^30505+1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 7
Running N+1 test using discriminant 17, base 1+sqrt(17)
(2010^30505+1)^2-2 is prime! (7971.5683s+0.0110s)

201528 digits - ie too small for the top 5 .. ;)
BotXXX is offline   Reply With Quote
Old 2017-03-06, 10:08   #85
BotXXX
 
BotXXX's Avatar
 
Aug 2003
Europe

110000102 Posts
Default

Current primes (for both bases upto n = 40.000)

base 316 (-1) 1 5 27 183 5331 14854 17396
base 316 (+1) 9 41 360 521 6421

base 2010 (-1) 3 35 1967
base 2010 (+1) 3 30505


(316^1-1)^2-2 is 3-PRP! (0.0000s+0.0001s)
Primality testing (316^1-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
(316^1-1)^2-2 is prime! (0.0001s+0.0008s)

(316^5-1)^2-2 is 3-PRP! (0.0000s+0.0007s)
Primality testing (316^5-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N-1 test using base 5
Running N+1 test using discriminant 17, base 1+sqrt(17)
Running N+1 test using discriminant 17, base 2+sqrt(17)
(316^5-1)^2-2 is prime! (0.0283s+0.0004s)

(316^9+1)^2-2 is 3-PRP! (0.0000s+0.0001s)
Primality testing (316^9+1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 5
Running N+1 test using discriminant 13, base 1+sqrt(13)
Running N+1 test using discriminant 13, base 2+sqrt(13)
(316^9+1)^2-2 is prime! (0.0276s+0.0006s)

(316^27-1)^2-2 is 3-PRP! (0.0003s+0.0002s)
Primality testing (316^27-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N-1 test using base 5
Running N+1 test using discriminant 13, base 2+sqrt(13)
Running N+1 test using discriminant 13, base 3+sqrt(13)
(316^27-1)^2-2 is prime! (0.0456s+0.0004s)

(316^41+1)^2-2 is 3-PRP! (0.0008s+0.0003s)
Primality testing (316^41+1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 5
Running N+1 test using discriminant 13, base 1+sqrt(13)
Running N+1 test using discriminant 13, base 2+sqrt(13)
(316^41+1)^2-2 is prime! (0.0338s+0.0004s)

(316^183-1)^2-2 is 3-PRP! (0.0147s+0.0001s)
Primality testing (316^183-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N+1 test using discriminant 11, base 2+sqrt(11)
Running N+1 test using discriminant 11, base 3+sqrt(11)
(316^183-1)^2-2 is prime! (0.1514s+0.0004s)

(316^360+1)^2-2 is 3-PRP! (0.0625s+0.0002s)
Primality testing (316^360+1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 5
Running N+1 test using discriminant 13, base 1+sqrt(13)
Running N+1 test using discriminant 13, base 2+sqrt(13)
(316^360+1)^2-2 is prime! (0.4942s+0.0004s)

(316^521+1)^2-2 is 3-PRP! (0.1391s+0.0002s)
Primality testing (316^521+1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 5
Running N+1 test using discriminant 13, base 1+sqrt(13)
Running N+1 test using discriminant 13, base 2+sqrt(13)
(316^521+1)^2-2 is prime! (1.0966s+0.0004s)

(316^5331-1)^2-2 is 3-PRP! (18.1007s+0.0008s)
Primality testing (316^5331-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N+1 test using discriminant 11, base 2+sqrt(11)
Running N+1 test using discriminant 11, base 3+sqrt(11)
(316^5331-1)^2-2 is prime! (148.4876s+0.0012s)

(316^6421+1)^2-2 is 3-PRP! (28.4269s+0.0010s)
Primality testing (316^6421+1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 5
Running N+1 test using discriminant 29, base 2+sqrt(29)
Running N+1 test using discriminant 29, base 4+sqrt(29)
(316^6421+1)^2-2 is prime! (261.8544s+0.0013s)

(316^14854-1)^2-2 is 3-PRP! (152.9047s+0.0040s)
Primality testing (316^14854-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N+1 test using discriminant 17, base 1+sqrt(17)
Running N+1 test using discriminant 17, base 2+sqrt(17)
(316^14854-1)^2-2 is prime! (1238.4924s+0.0034s)

(316^17396-1)^2-2 is 3-PRP! (185.3647s+0.0047s)
Primality testing (316^17396-1)^2-2 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N+1 test using discriminant 13, base 2+sqrt(13)
Running N+1 test using discriminant 13, base 3+sqrt(13)
(316^17396-1)^2-2 is prime! (1956.7175s+0.0038s)
BotXXX is offline   Reply With Quote
Old 2017-04-16, 01:30   #86
Dylan14
 
Dylan14's Avatar
 
"Dylan"
Mar 2017

24C16 Posts
Default

For base 50, 1 <= n <= 50000, I found the following primes:
Code:
 (50^1-1)^2-2
 (50^3-1)^2-2
 (50^4+1)^2-2
 (50^4-1)^2-2
 (50^9-1)^2-2
 (50^31-1)^2-2
 (50^38+1)^2-2
 (50^66-1)^2-2
 (50^93+1)^2-2
 (50^115-1)^2-2
 (50^120+1)^2-2
 (50^430-1)^2-2
 (50^1233-1)^2-2
 (50^2546-1)^2-2
 (50^2674-1)^2-2
 (50^4396+1)^2-2
 (50^6360-1)^2-2
 (50^11459+1)^2-2
 (50^25887+1)^2-2
Dylan14 is offline   Reply With Quote
Old 2017-04-18, 18:40   #87
sweety439
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

319710 Posts
Default

I searched bases 42, 44, 46 and 48 and found those primes: (for n>100)

(42^195-1)^2-2
(42^255-1)^2-2
(42^713-1)^2-2
(42^119+1)^2-2
(44^1288-1)^2-2
(44^195+1)^2-2
(44^1482+1)^2-2
(46^269-1)^2-2
(46^1304-1)^2-2
(48^207+1)^2-2
(48^329+1)^2-2
(48^1153+1)^2-2

Continue searching...

Last fiddled with by sweety439 on 2017-04-18 at 18:53
sweety439 is offline   Reply With Quote
Old 2017-04-19, 19:17   #88
sweety439
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

23·139 Posts
Default

Found another prime:

(44^1947-1)^2-2
sweety439 is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Carol / Kynea Coordinated Search - Reservations rogue And now for something completely different 303 2022-01-13 15:40
Distribution of Mersenne primes before and after couples of primes found emily Math 34 2017-07-16 18:44
Carol / Kynea search (Near-power primes) rogue And now for something completely different 37 2016-06-18 17:58
a 18+ Christmas carol science_man_88 Lounge 10 2010-12-13 23:26
possible primes (real primes & poss.prime products) troels munkner Miscellaneous Math 4 2006-06-02 08:35

All times are UTC. The time now is 10:55.


Mon Jan 17 10:55:25 UTC 2022 up 178 days, 5:24, 0 users, load averages: 0.68, 1.01, 1.01

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔