mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Miscellaneous Math

Reply
 
Thread Tools
Old 2016-09-03, 17:43   #1
Godzilla
 
Godzilla's Avatar
 
May 2016

7×23 Posts
Default Is this a Perfect Number ?

 2^{127}*2

(19:33) gp > 2^127*2
%85 = 340282366920938463463374607431768211456
(19:40) gp > factor ( %85)
%86 =
[2 128]
Godzilla is offline   Reply With Quote
Old 2016-09-03, 17:49   #2
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

DB116 Posts
Default



"In number theory, a perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is, the sum of its positive divisors excluding the number itself" [wiki]
paulunderwood is online now   Reply With Quote
Old 2016-09-03, 18:35   #3
xilman
Bamboozled!
 
xilman's Avatar
 
"π’‰Ίπ’ŒŒπ’‡·π’†·π’€­"
May 2003
Down not across

19·547 Posts
Default

Quote:
Originally Posted by paulunderwood View Post


"In number theory, a perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is, the sum of its positive divisors excluding the number itself" [wiki]
TL;DR No
xilman is offline   Reply With Quote
Old 2016-09-03, 18:41   #4
Godzilla
 
Godzilla's Avatar
 
May 2016

2418 Posts
Default

With which program can I calculate, this number?
-EDIT-
because 2178 -8712 = -6534 + 4356 = -2178 inverted

Code:
(20:24) gp > 2178^2178
%96 = 1950081059793717728316532672097834427941452404788642501980393902363840261425584064190007930301120306924898218450138483264544333931122005262524746435913669408058974896899481357645435956704284530052894198059325188325491138755622647837906235397320449037449779980010417943756039614778076393752524798934801871593505065307193308624862599128095308702851849875543914644322626115534441044021533410524691703674436501014365155935460225829202827144991942396898598698755085084183844164361295224400819181006912848434068165727699239977862176204821802527958004796033877620005800031891359137410290222117423676259695119132229605294491076536984838863914202683213905159052994943220721783407478702119798983879260226863985710404531861234940769685609737661042841387663058327449389408667137256854180708049852648167305999897646452007591249672723708185304598048021957831598901550869903295723645774204654016304904161763814756270325852931124770073960553660400853849404153941864948979388127688070693351310445992951543209921426871029109605090863333818825238461083211425667468931755019497936602869588339741645865869372168938288355468215427389354250606026382715223909057278967605090553985443058255234294467129823107285864014350549692437034434163420331739726092616685011486761254779764941110050291275402457103663051432683089589324342491805552767493176806659642723577504073916331316926284840791062811208013724460393293297018584863469570142860663862287470409101713355014587688737948950583482698256916402461891000456362068645039119598837307587230302025726350829366638361166110748044171017223599655887290237562869860885616266468383360341365676442214884262923513775709207779800391217139205186738211326537645180493897804989878706416715782227176846238579131009858568745956636885966432878781989782619532895199015807655613509687152387290702843839200826312680131681340883925690469382046880461661895308930044832484926508721226820633225897278400017597982571648524957628407408310656106287585649858063612808601866132068926942151804631806696568265862042589040019024809358792870275914413393723801330897209387369772088774949251316204555782920529985632325282309071280227580726737262991180180756824468527057816987608956197625039032650831838110325965225714048031064862903561455223272840296349786474816348022858419058814013790826707953961044301809698620883047503325912579727129351677460136446249321132061699350779888496375450560476965926145230312542051766445621311053069316659009927529205788139678147962691284285355528560758547696003204852035566493435544741085960123422853866506905204455947215488398374927791013166181280936470530615474196336179885773014775976888963227484332702480169447101852330045784450716679416692714395777420545818481071189206613995467430148085862927184528919034341426826492931346975688113013578245817170337105871200833952364136872778127721138114813211513292949888767864657389476941026832278580060720072886984251565097261054949983264636790143557099152178889815069997082807781471417939690071525258030300448398319271341904693[+++]
(20:27) gp >  factor ( %96)
%97 =
[ 2 2178]

[ 3 4356]

[11 4356]

Last fiddled with by Godzilla on 2016-09-03 at 19:09
Godzilla is offline   Reply With Quote
Old 2016-09-03, 18:52   #5
science_man_88
 
science_man_88's Avatar
 
"Forget I exist"
Jul 2009
Dumbassville

26×131 Posts
Default

Quote:
Originally Posted by Godzilla View Post
With which program can I calculate, this number?

because 2178 -8712 = -6534 + 4356 = 2178 inverted


Code:
(20:24) gp > 2178^2178
%96 = 1950081059793717728316532672097834427941452404788642501980393902363840261425584064190007930301120306924898218450138483264544333931122005262524746435913669408058974896899481357645435956704284530052894198059325188325491138755622647837906235397320449037449779980010417943756039614778076393752524798934801871593505065307193308624862599128095308702851849875543914644322626115534441044021533410524691703674436501014365155935460225829202827144991942396898598698755085084183844164361295224400819181006912848434068165727699239977862176204821802527958004796033877620005800031891359137410290222117423676259695119132229605294491076536984838863914202683213905159052994943220721783407478702119798983879260226863985710404531861234940769685609737661042841387663058327449389408667137256854180708049852648167305999897646452007591249672723708185304598048021957831598901550869903295723645774204654016304904161763814756270325852931124770073960553660400853849404153941864948979388127688070693351310445992951543209921426871029109605090863333818825238461083211425667468931755019497936602869588339741645865869372168938288355468215427389354250606026382715223909057278967605090553985443058255234294467129823107285864014350549692437034434163420331739726092616685011486761254779764941110050291275402457103663051432683089589324342491805552767493176806659642723577504073916331316926284840791062811208013724460393293297018584863469570142860663862287470409101713355014587688737948950583482698256916402461891000456362068645039119598837307587230302025726350829366638361166110748044171017223599655887290237562869860885616266468383360341365676442214884262923513775709207779800391217139205186738211326537645180493897804989878706416715782227176846238579131009858568745956636885966432878781989782619532895199015807655613509687152387290702843839200826312680131681340883925690469382046880461661895308930044832484926508721226820633225897278400017597982571648524957628407408310656106287585649858063612808601866132068926942151804631806696568265862042589040019024809358792870275914413393723801330897209387369772088774949251316204555782920529985632325282309071280227580726737262991180180756824468527057816987608956197625039032650831838110325965225714048031064862903561455223272840296349786474816348022858419058814013790826707953961044301809698620883047503325912579727129351677460136446249321132061699350779888496375450560476965926145230312542051766445621311053069316659009927529205788139678147962691284285355528560758547696003204852035566493435544741085960123422853866506905204455947215488398374927791013166181280936470530615474196336179885773014775976888963227484332702480169447101852330045784450716679416692714395777420545818481071189206613995467430148085862927184528919034341426826492931346975688113013578245817170337105871200833952364136872778127721138114813211513292949888767864657389476941026832278580060720072886984251565097261054949983264636790143557099152178889815069997082807781471417939690071525258030300448398319271341904693[+++]
(20:27) gp >  factor ( %96)
%97 =
[ 2 2178]

[ 3 4356]

[11 4356]
you can use the code tags that may decrease the scroll needed for people to look at the number. you've made a sign error in your first calculation I can tell you that even without delving into it really. but here's how you messed up see your first calculation is nothing more than the statement x-4x=-3x+2x=x but -3x+2x = -x. your second is just the fact that x= 2178 = (2^1)(3^2)(11^2) so x^x= (2^x)(3^(2x))(11^(2x))

Last fiddled with by science_man_88 on 2016-09-03 at 18:53 Reason: put the darn thing in code tags
science_man_88 is offline   Reply With Quote
Old 2016-09-03, 19:04   #6
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

350510 Posts
Default

F.T.A. [wiki]

paulunderwood is online now   Reply With Quote
Old 2016-09-03, 22:02   #7
Godzilla
 
Godzilla's Avatar
 
May 2016

7·23 Posts
Default

Quote:
Originally Posted by science_man_88 View Post
you can use the code tags that may decrease the scroll needed for people to look at the number. you've made a sign error in your first calculation I can tell you that even without delving into it really. but here's how you messed up see your first calculation is nothing more than the statement x-4x=-3x+2x=x but -3x+2x = -x. your second is just the fact that x= 2178 = (2^1)(3^2)(11^2) so x^x= (2^x)(3^(2x))(11^(2x))
But the two numbers have the same factors (only the factor 3 is plus one time ). Why ?

Code:
%43 = 2178
(23:51) gp > factor(%43)
%44 =
[ 2 1]

[ 3 2]

[11 2]

(23:51) gp > 6534
%45 = 6534
(23:52) gp > factor(%45)
%46 =
[ 2 1]

[ 3 3]

[11 2]
The 9's in the middle 65-9..9-34 and 21-9..9-78


Code:
(23:47) gp > 65934653465346534653465346534  
%39 = 65934653465346534653465346534
(23:47) gp > factor(%39)
%40 =
[                     2 1]

[                     3 4]

[                    11 1]

[                    37 1]

[                   139 1]

[7194315905762589999359 1]

(23:47) gp > 21978217821782178217821782178
%41 = 21978217821782178217821782178
(23:47) gp > factor(%41)
%42 =
[                     2 1]

[                     3 3]

[                    11 1]

[                    37 1]

[                   139 1]

[7194315905762589999359 1]
Code:
%47 = 21978219997821782178217821782178
(00:04) gp > factor(%47)
%48 =
[                        2 1]

[                        3 4]

[                       11 3]

[                       37 1]

[2754848512151242424269727 1]

(00:04) gp > 65934659993465346534653465346534
%49 = 65934659993465346534653465346534
(00:04) gp > factor(%49)
%50 =
[                        2 1]

[                        3 5]

[                       11 3]

[                       37 1]

[2754848512151242424269727 1]

Last fiddled with by Godzilla on 2016-09-03 at 22:06
Godzilla is offline   Reply With Quote
Old 2016-09-03, 22:13   #8
science_man_88
 
science_man_88's Avatar
 
"Forget I exist"
Jul 2009
Dumbassville

26×131 Posts
Default

Quote:
Originally Posted by Godzilla View Post
But the two numbers have the same factors (only the factor 3 is plus one time ). Why ?
because one of them ( 6534) is 3 times the other (2178) so of course they will have the same factors other than the extra 3.
science_man_88 is offline   Reply With Quote
Old 2016-09-05, 05:56   #9
LaurV
Romulan Interpreter
 
LaurV's Avatar
 
Jun 2011
Thailand

22·2,239 Posts
Default

Quote:
Originally Posted by Godzilla View Post
 2^{127}*2
is this a perfect number?
No.
Code:
gp > s=2^127*2
%1 = 340282366920938463463374607431768211456
gp > divisors(s)
%2 = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, ...etc... many rows of numbers... 340282366920938463463374607431768211456]
gp > sigma(s)
%3 = 680564733841876926926749214863536422911
gp > sigma(s)-s
%4 = 340282366920938463463374607431768211455
gp > 2^128-1
%5 = 340282366920938463463374607431768211455
gp >
(why? can you tell?)

Also, you seem to confuse "prime factors" with "proper divisors".
Code:
gp > factorint(2178)
%6 =
[ 2 1]
[ 3 2]
[11 2]
gp > divisors(2178)
%7 = [1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 121, 198, 242, 363, 726, 1089, 2178]
gp >
LaurV is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Down to a perfect number fivemack Aliquot Sequences 0 2014-12-23 09:47
Odd Perfect Number is 36k+9 ? isaac Miscellaneous Math 5 2014-07-22 22:18
perfect number proof toilet Homework Help 12 2012-10-17 13:42
Odd Perfect Number, when will numbers go beyond ecm? jasong Factoring 1 2006-05-14 11:28
What's up with the odd perfect number server? jasong GMP-ECM 6 2006-02-18 02:42

All times are UTC. The time now is 06:48.

Wed Dec 2 06:48:23 UTC 2020 up 83 days, 3:59, 1 user, load averages: 2.01, 1.64, 1.56

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.